%I #7 Jun 20 2022 08:36:43
%S 1,2,14,290,16654,2487202,916292622,801308046114,1618342215277838,
%T 7398618880762147490,75427503900622910066190,
%U 1695072499481604881387820578,83204183269315611109025907220238,8854418165429899481934158557358648738
%N E.g.f. A(x) satisfies A(x) = 1 + 2 * (1 - exp(-x)) * A(2 * (1 - exp(-x))).
%F E.g.f. A(x) satisfies: A(-log(1-x)) = 1 + 2*x*A(2*x).
%F a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(n-k) * k * 2^k * Stirling2(n,k) * a(k-1).
%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (-1)^(i-j)*j*2^j*stirling(i, j, 2)*v[j])); v;
%Y Cf. A355123, A355130.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Jun 20 2022