login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A355133
E.g.f. A(x) satisfies A(x) = 1 + 2 * log(1+x) * A(2 * log(1+x)).
3
1, 2, 14, 292, 16836, 2517888, 927979616, 811623678304, 1639230314891936, 7494183556478948928, 76401967141928846136512, 1716972732272402536841957760, 84279193103775042893631925450624, 8968818994749615710061662692132983296
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies: A(exp(x) - 1) = 1 + 2*x*A(2*x).
a(0) = 1; a(n) = Sum_{k=1..n} k * 2^k * Stirling1(n,k) * a(k-1).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*2^j*stirling(i, j, 1)*v[j])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 20 2022
STATUS
approved