login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227777
Least splitter of n-th and (n+1)st partial sums of 1/0! + 1/1! + ... + 1/n! + ... = e.
1
1, 2, 3, 7, 39, 110, 252, 465, 1001, 9545, 27634, 136168, 589394, 398959, 5394991, 36568060, 130087267, 312129649, 5779594018, 5467464369, 69204258903, 186055048882, 403978495031, 8690849042711, 25668568633102, 246378923308185, 1163579759684330
OFFSET
1,2
COMMENTS
Suppose x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y. Let s(n) = 1/0! + 1/1! + ... + 1/n!; since s(n) -> e, the corresponding least splitting rationals (see Example) also approach e.
Conjecture: a(n) <= n*sqrt(n!) for all n>0; see scatterplot under Links. - Jon E. Schoenfield, Jun 28 2015
LINKS
Manfred Scheucher, Sage Script
Jon E. Schoenfield, Magma program
EXAMPLE
The first 19 splitting rationals are 2, 5/2, 8/3, 19/7, 106/39, 299/110, 685/252, 1264/465, 2721/1001, 25946/9545, 75117/27634, 370143/136168, 1602139/589394, 1084483/398959, 14665106/5394991, 99402293/36568060, 353613854/130087267, 848456353/312129649 & 15710565395/5779594018. Regarding the last one, |15710565395/5779594018 - e| < 10^(-19).
The numerators of these rationals are a proper subsequence of A006258 & A119014 and the denominators are a proper subsequence of A006259 & A119015. - Robert G. Wilson v, Jun 27 2015
MATHEMATICA
z = 16; r[x_, y_] := Module[{a, b, x1 = Min[{x, y}], y1 = Max[{x, y}]}, If[x == y, x, b = NestWhile[#1 + 1 &, 1, ! (a = Ceiling[#1 x1 - 1]) < Ceiling[#1 y1] - 1 &]; (a + 1)/b]]; s[n_] := s[n] = Sum[1/(k - 1)!, {k, 1, n}]; N[Table[s[k], {k, 1, z}]]; t = Table[r[s[n], s[n + 1]], {n, 2, z}]; fd = Denominator[t] (* Peter J. C. Moses, Jul 20 2013 *)
CROSSREFS
Cf. A227631.
Sequence in context: A000317 A047024 A182219 * A037843 A355129 A102604
KEYWORD
nonn,frac
AUTHOR
Clark Kimberling, Jul 30 2013
EXTENSIONS
a(16)-a(17) from Manfred Scheucher, Jun 23 2015
a(18)-a(19) from Robert G. Wilson v, Jun 27 2015
a(20)-a(27) from Jon E. Schoenfield, Jun 27 2015
STATUS
approved