login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227631 Array t(n,k): row n consists of the positive integers m for which the least splitter of H(m) and H(m+1) is n, where H denotes harmonic number. 16
1, 3, 2, 10, 6, 5, 30, 18, 7, 4, 82, 50, 15, 8, 16, 226, 136, 21, 13, 20, 9, 615, 372, 42, 23, 24, 12, 14, 1673, 1014, 59, 38, 36, 25, 19, 44, 4549, 2758, 115, 64, 45, 35, 22, 56, 17, 12366, 7500, 161, 106, 55, 70, 26, 73, 33, 11, 33616, 20389, 315, 175, 67 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Suppose that x < y.  The least splitter of x and y is introduced here as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y.  Conjecture:  every row of the array in A227631 is infinite, and every positive integer occurs exactly once.  Let r be the limiting ratio of consecutive terms of row 1; is r = e?

LINKS

Table of n, a(n) for n=1..60.

EXAMPLE

Northwest corner of the array:

1 ... 3 ... 10 ... 30 ... 82 ... 226

2 ... 6 ... 18 ... 50 ... 136 .. 372

5 ... 7 ... 15 ... 21 ... 42 ... 59

4 ... 8 ... 13 ... 23 ... 38 ... 64

16 .. 20 .. 24 ... 36 ... 45 ... 55

9 ... 12 .. 25 ... 35 ... 70 ... 97

14 .. 19 .. 22 ... 26 ... 34 ... 40

t(2,1) = 2 matches 1 + 1/2 <= 3/2 < 1 + 1/2 + 1/3;

similarly, t(2,2) = 6 matches H(6) < 5/2 < H(7) and t(2,3) = 18 matches H(18) < 7/2 < H(19).

MATHEMATICA

h[n_] := h[n] = HarmonicNumber[n]; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; t = Table[r[h[n], h[n + 1]], {n, 1, 40000}];

d = Denominator[t]; u[n_] := Flatten[Position[d, n]]; TableForm[Table[u[n], {n, 1, 50}]]  (* A227631  *)

r1[n_, k_] := u[n][[k]]; z = 11;  v = Flatten[Table[r1[n - k + 1, k], {n, z}, {k, n, 1, -1}]]  (*  A227631 sequence *)  (* Peter J. C. Moses, Jul 15 2013 *)

CROSSREFS

Cf. A227629, A227630.

Sequence in context: A057977 A063549 A071653 * A246830 A268531 A056861

Adjacent sequences:  A227628 A227629 A227630 * A227632 A227633 A227634

KEYWORD

nonn,tabl,frac

AUTHOR

Clark Kimberling, Jul 18 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 09:49 EDT 2017. Contains 288813 sequences.