This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227631 Array t(n,k): row n consists of the positive integers m for which the least splitter of H(m) and H(m+1) is n, where H denotes harmonic number. 16
 1, 3, 2, 10, 6, 5, 30, 18, 7, 4, 82, 50, 15, 8, 16, 226, 136, 21, 13, 20, 9, 615, 372, 42, 23, 24, 12, 14, 1673, 1014, 59, 38, 36, 25, 19, 44, 4549, 2758, 115, 64, 45, 35, 22, 56, 17, 12366, 7500, 161, 106, 55, 70, 26, 73, 33, 11, 33616, 20389, 315, 175, 67 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Suppose that x < y.  The least splitter of x and y is introduced here as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y.  Conjecture:  every row of the array in A227631 is infinite, and every positive integer occurs exactly once.  Let r be the limiting ratio of consecutive terms of row 1; is r = e? LINKS EXAMPLE Northwest corner of the array: 1 ... 3 ... 10 ... 30 ... 82 ... 226 2 ... 6 ... 18 ... 50 ... 136 .. 372 5 ... 7 ... 15 ... 21 ... 42 ... 59 4 ... 8 ... 13 ... 23 ... 38 ... 64 16 .. 20 .. 24 ... 36 ... 45 ... 55 9 ... 12 .. 25 ... 35 ... 70 ... 97 14 .. 19 .. 22 ... 26 ... 34 ... 40 t(2,1) = 2 matches 1 + 1/2 <= 3/2 < 1 + 1/2 + 1/3; similarly, t(2,2) = 6 matches H(6) < 5/2 < H(7) and t(2,3) = 18 matches H(18) < 7/2 < H(19). MATHEMATICA h[n_] := h[n] = HarmonicNumber[n]; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; t = Table[r[h[n], h[n + 1]], {n, 1, 40000}]; d = Denominator[t]; u[n_] := Flatten[Position[d, n]]; TableForm[Table[u[n], {n, 1, 50}]]  (* A227631  *) r1[n_, k_] := u[n][[k]]; z = 11;  v = Flatten[Table[r1[n - k + 1, k], {n, z}, {k, n, 1, -1}]]  (*  A227631 sequence *)  (* Peter J. C. Moses, Jul 15 2013 *) CROSSREFS Cf. A227629, A227630. Sequence in context: A057977 A063549 A071653 * A246830 A268531 A056861 Adjacent sequences:  A227628 A227629 A227630 * A227632 A227633 A227634 KEYWORD nonn,tabl,frac AUTHOR Clark Kimberling, Jul 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.