login
A353741
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with product k, all zeros removed.
0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 1, 1, 3, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 3, 1, 1, 4, 2, 2, 1, 4, 1, 1, 1, 3, 2
OFFSET
0,11
COMMENTS
Warning: There are certain internal "holes" in A339095 that are removed in this sequence.
EXAMPLE
Triangle begins:
1
1
1 1
1 1 1
1 1 1 2
1 1 1 2 1 1
1 1 1 2 1 2 2 1
1 1 1 2 1 2 1 2 1 1 2
1 1 1 2 1 2 1 3 1 1 3 1 3 1
1 1 1 2 1 2 1 3 2 1 3 1 1 3 2 2 2 1
1 1 1 2 1 2 1 3 2 2 3 1 1 4 2 2 1 4 1 1 1 3 2
Row n = 7 counts the following partitions:
1111111 211111 31111 4111 511 61 7 421 331 52 43
22111 3211 2221 322
MATHEMATICA
DeleteCases[Table[Length[Select[IntegerPartitions[n], Times@@#==k&]], {n, 0, 10}, {k, 1, 2^n}], 0, 2]
CROSSREFS
Row sums are A000041.
Row lengths are A034891.
A partial transpose is A319000.
The full version with zeros is A339095, rank statistic A003963.
A008284 counts partitions by sum, strict A116608.
A225485 counts partitions by frequency depth.
A266477 counts partitions by product of multiplicities, ranked by A005361.
Sequence in context: A331284 A331591 A003649 * A287170 A216784 A256067
KEYWORD
nonn,tabf,less
AUTHOR
Gus Wiseman, May 20 2022
STATUS
approved