login
A003649
Class number of real quadratic field Q(sqrt f), where f is the n-th squarefree number A005117(n).
(Formerly M0054)
5
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 3, 2, 4, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 2
OFFSET
2,6
REFERENCES
Şaban Alaca & Kenneth S. Williams, Introductory Algebraic Number Theory. Cambridge: Cambridge University Press (2004): 322-326, Theorem 12.6.1, Example 12.6.7, Table 8.
D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, p. 432.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 2..6083 (squarefree numbers < 10000)
S. R. Finch, Class number theory [Cached copy, with permission of the author]
MATHEMATICA
DeleteCases[Table[Boole[FreeQ[FactorInteger[n], {_, k_ /; k > 2}]] * NumberFieldClassNumber[Sqrt[n]], {n, 100}], 0] (* Alonso del Arte, Aug 26 2014 *)
PROG
(PARI) for(n=2, 1e3, if(issquarefree(n), print1(qfbclassno(n*if(n%4>1, 4, 1))", "))) \\ Charles R Greathouse IV, Feb 19 2013
CROSSREFS
Cf. A000924.
Sequence in context: A193509 A331284 A331591 * A353741 A287170 A216784
KEYWORD
nonn
STATUS
approved