%I #12 Jan 05 2024 13:26:29
%S 1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,2,2,1,1,1,1,2,1,2,1,2,1,
%T 1,2,1,1,1,2,1,2,1,3,1,1,3,1,3,1,1,1,1,2,1,2,1,3,2,1,3,1,1,3,2,2,2,1,
%U 1,1,1,2,1,2,1,3,2,2,3,1,1,4,2,2,1,4,1,1,1,3,2
%N Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with product k, all zeros removed.
%C Warning: There are certain internal "holes" in A339095 that are removed in this sequence.
%e Triangle begins:
%e 1
%e 1
%e 1 1
%e 1 1 1
%e 1 1 1 2
%e 1 1 1 2 1 1
%e 1 1 1 2 1 2 2 1
%e 1 1 1 2 1 2 1 2 1 1 2
%e 1 1 1 2 1 2 1 3 1 1 3 1 3 1
%e 1 1 1 2 1 2 1 3 2 1 3 1 1 3 2 2 2 1
%e 1 1 1 2 1 2 1 3 2 2 3 1 1 4 2 2 1 4 1 1 1 3 2
%e Row n = 7 counts the following partitions:
%e 1111111 211111 31111 4111 511 61 7 421 331 52 43
%e 22111 3211 2221 322
%t DeleteCases[Table[Length[Select[IntegerPartitions[n],Times@@#==k&]],{n,0,10},{k,1,2^n}],0,2]
%Y Row sums are A000041.
%Y Row lengths are A034891.
%Y A partial transpose is A319000.
%Y The full version with zeros is A339095, rank statistic A003963.
%Y A008284 counts partitions by sum, strict A116608.
%Y A225485 counts partitions by frequency depth.
%Y A266477 counts partitions by product of multiplicities, ranked by A005361.
%Y Cf. A002033, A266499, A325242, A325268, A325280, A353503, A353506, A353698.
%K nonn,tabf,less
%O 0,11
%A _Gus Wiseman_, May 20 2022