login
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with product k, all zeros removed.
0

%I #12 Jan 05 2024 13:26:29

%S 1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,2,2,1,1,1,1,2,1,2,1,2,1,

%T 1,2,1,1,1,2,1,2,1,3,1,1,3,1,3,1,1,1,1,2,1,2,1,3,2,1,3,1,1,3,2,2,2,1,

%U 1,1,1,2,1,2,1,3,2,2,3,1,1,4,2,2,1,4,1,1,1,3,2

%N Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with product k, all zeros removed.

%C Warning: There are certain internal "holes" in A339095 that are removed in this sequence.

%e Triangle begins:

%e 1

%e 1

%e 1 1

%e 1 1 1

%e 1 1 1 2

%e 1 1 1 2 1 1

%e 1 1 1 2 1 2 2 1

%e 1 1 1 2 1 2 1 2 1 1 2

%e 1 1 1 2 1 2 1 3 1 1 3 1 3 1

%e 1 1 1 2 1 2 1 3 2 1 3 1 1 3 2 2 2 1

%e 1 1 1 2 1 2 1 3 2 2 3 1 1 4 2 2 1 4 1 1 1 3 2

%e Row n = 7 counts the following partitions:

%e 1111111 211111 31111 4111 511 61 7 421 331 52 43

%e 22111 3211 2221 322

%t DeleteCases[Table[Length[Select[IntegerPartitions[n],Times@@#==k&]],{n,0,10},{k,1,2^n}],0,2]

%Y Row sums are A000041.

%Y Row lengths are A034891.

%Y A partial transpose is A319000.

%Y The full version with zeros is A339095, rank statistic A003963.

%Y A008284 counts partitions by sum, strict A116608.

%Y A225485 counts partitions by frequency depth.

%Y A266477 counts partitions by product of multiplicities, ranked by A005361.

%Y Cf. A002033, A266499, A325242, A325268, A325280, A353503, A353506, A353698.

%K nonn,tabf,less

%O 0,11

%A _Gus Wiseman_, May 20 2022