login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353740
E.g.f. A(x) satisfies: 1 = Sum_{n>=0} 3^n * (exp(n*x) - A(x))^n / n!.
1
1, 1, 4, 73, 2488, 123535, 8144527, 675856090, 68118924622, 8127605321929, 1125932450595736, 178367047220336887, 31919374476052799215, 6387927327635465158768, 1417660111210685715869386, 346403593023300571689592957, 92622566428288426844609245312
OFFSET
0,3
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = exp(x) with p = -A(x), r = 3.
FORMULA
E.g.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} 3^n * (exp(n*x) - A(x))^n / n!.
(2) 1 = Sum_{n>=0} 3^n * exp(n^2*x - 3*A(x)*exp(n*x)) / n!.
EXAMPLE
E.g.f: A(x) = 1 + x + 4*x^2/2! + 73*x^3/3! + 2488*x^4/4! + 123535*x^5/5! + 8144527*x^6/6! + 675856090*x^7/7! + 68118924622*x^8/8! + 8127605321929*x^9/9! + ...
such that
1 = 1 + 3*(exp(x) - A(x)) + 3^2*(exp(2*x) - A(x))^2/2! + 3^3*(exp(3*x) - A(x))^3/3! + 3^4*(exp(4*x) - A(x))^4/4! + 3^5*(exp(5*x) - A(x))^5/5! + 3^6*(exp(6*x) - A(x))^6/6! + ...
also
1 = exp(-3*A(x)) + 3*exp(x - 3*A(x)*exp(x)) + 3^2*exp(4*x - 3*A(x)*exp(2*x))/2! + 3^3*exp(9*x - 3*A(x)*exp(3*x))/3! + 3^4*exp(16*x - 3*A(x)*exp(4*x))/4! + 3^5*exp(25*x - 3*A(x)*exp(5*x))/5! + ...
Related series.
log(A(x)) = x + 3*x^2/2! + 63*x^3/3! + 2190*x^4/4! + 109899*x^5/5! + 7300587*x^6/6! + 609541911*x^7/7! + 61757056830*x^8/8! + 7402438614951*x^9/9! + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=0, #A, (exp(m*x +x*O(x^#A)) - Ser(A))^m * 3^m/m! ), #A-1)/3; ); H=A; n!*A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A089665 A092871 A222767 * A090212 A137046 A104335
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2022
STATUS
approved