Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 May 08 2022 08:45:47
%S 1,1,4,73,2488,123535,8144527,675856090,68118924622,8127605321929,
%T 1125932450595736,178367047220336887,31919374476052799215,
%U 6387927327635465158768,1417660111210685715869386,346403593023300571689592957,92622566428288426844609245312
%N E.g.f. A(x) satisfies: 1 = Sum_{n>=0} 3^n * (exp(n*x) - A(x))^n / n!.
%C More generally, the following sums are equal:
%C (1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
%C (2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
%C here, q = exp(x) with p = -A(x), r = 3.
%F E.g.f. A(x) satisfies:
%F (1) 1 = Sum_{n>=0} 3^n * (exp(n*x) - A(x))^n / n!.
%F (2) 1 = Sum_{n>=0} 3^n * exp(n^2*x - 3*A(x)*exp(n*x)) / n!.
%e E.g.f: A(x) = 1 + x + 4*x^2/2! + 73*x^3/3! + 2488*x^4/4! + 123535*x^5/5! + 8144527*x^6/6! + 675856090*x^7/7! + 68118924622*x^8/8! + 8127605321929*x^9/9! + ...
%e such that
%e 1 = 1 + 3*(exp(x) - A(x)) + 3^2*(exp(2*x) - A(x))^2/2! + 3^3*(exp(3*x) - A(x))^3/3! + 3^4*(exp(4*x) - A(x))^4/4! + 3^5*(exp(5*x) - A(x))^5/5! + 3^6*(exp(6*x) - A(x))^6/6! + ...
%e also
%e 1 = exp(-3*A(x)) + 3*exp(x - 3*A(x)*exp(x)) + 3^2*exp(4*x - 3*A(x)*exp(2*x))/2! + 3^3*exp(9*x - 3*A(x)*exp(3*x))/3! + 3^4*exp(16*x - 3*A(x)*exp(4*x))/4! + 3^5*exp(25*x - 3*A(x)*exp(5*x))/5! + ...
%e Related series.
%e log(A(x)) = x + 3*x^2/2! + 63*x^3/3! + 2190*x^4/4! + 109899*x^5/5! + 7300587*x^6/6! + 609541911*x^7/7! + 61757056830*x^8/8! + 7402438614951*x^9/9! + ...
%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
%o A[#A] = polcoeff( sum(m=0, #A, (exp(m*x +x*O(x^#A)) - Ser(A))^m * 3^m/m! ), #A-1)/3; ); H=A; n!*A[n+1]}
%o for(n=0, 25, print1(a(n), ", "))
%Y Cf. A326095, A353739.
%K nonn
%O 0,3
%A _Paul D. Hanna_, May 06 2022