login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344700
Numbers k for which A306927(k) [= A001615(k)-k] is a multiple of A344705(k) [= A001615(k)-A001065(k)], and their quotient is nonnegative.
6
1, 6, 24, 28, 168, 496, 864, 1080, 1520, 1836, 2016, 2088, 2112, 2520, 2912, 2976, 3000, 3024, 3240, 3800, 8128, 9000, 11088, 11232, 11448, 14160, 14688, 16920, 17028, 18360, 19872, 20520, 20880, 25280, 25488, 27552, 29376, 30800, 31200, 31320, 31968, 35400, 39240, 44064, 48768, 49896, 50760, 51480, 51660, 52200, 55680
OFFSET
1,2
COMMENTS
Numbers k for which A344704(k) = A344705(k), i.e., numbers k such that gcd(A001615(k)-k, A001615(k)-A001065(k)) = A001615(k) - A001065(k).
Note that A306927(k) is always nonnegative, but A344705(k) = A033879(k) + A306927(k) gets also negative values. Number k is perfect only when A033879(k) = A344705(k) - A306927(k) = 0, that is, when A344705(k) = A306927(k), which necessitates that A306927(k) should be a multiple of A344705(k), and their quotient should be nonnegative (actually = +1).
In the range 1 .. 2^31 there are 782 such numbers, of which only the initial 1 is odd.
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
isA344700(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); (gcd(t-n, u)==u); };
\\ Alternatively as:
isA344700(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); ((u>0)&&(0==((t-n)%u))); };
CROSSREFS
Cf. A000203, A001065, A001615, A033879, A244963, A306927, A344704, A344705, A344752 (gives the quotient A306927(k)/A344705(k) computed for these terms), A344753.
Cf. A000396 (subsequence).
Cf. also A344754, A344755.
Sequence in context: A226476 A216793 A294900 * A064510 A335736 A228383
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 28 2021
STATUS
approved