login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A344306 Number of cyclic subgroups of the group (C_n)^10, where C_n is the cyclic group of order n. 5
1, 1024, 29525, 524800, 2441407, 30233600, 47079209, 268698112, 581150417, 2500000768, 2593742461, 15494720000, 11488207655, 48209110016, 72082541675, 137573433856, 125999618779, 595098027008, 340614792101, 1281250393600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Inverse Moebius transform of A160957.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

László Tóth, On the number of cyclic subgroups of a finite abelian group, arXiv: 1203.6201 [math.GR], 2012.

FORMULA

a(n) = Sum_{x_1|n, x_2|n, ..., x_10|n} phi(x_1)*phi(x_2)* ... *phi(x_10)/phi(lcm(x_1, x_2, ..., x_10)).

If p is prime, a(p) = 1 + (p^10 - 1)/(p - 1).

From Amiram Eldar, Nov 15 2022: (Start)

Multiplicative with a(p^e) = 1 + ((p^10 - 1)/(p - 1))*((p^(9*e) - 1)/(p^9 - 1)).

Sum_{k=1..n} a(k) ~ c * n^10, where c = (zeta(10)/10) * Product_{p prime} ((1-1/p^9)/(p^2*(1-1/p))) = 0.1944248708... . (End)

MATHEMATICA

f[p_, e_] := 1 + ((p^10 - 1)/(p - 1))*((p^(9*e) - 1)/(p^9 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)

PROG

(PARI) a160957(n) = sumdiv(n, d, moebius(n/d)*d^10)/eulerphi(n);

a(n) = sumdiv(n, d, a160957(d));

CROSSREFS

Cf. A000010, A013668, A160957, A060648, A064969, A280184, A344219, A344302, A344303, A344304, A344305.

Sequence in context: A205611 A016781 A247933 * A205349 A016805 A230790

Adjacent sequences: A344303 A344304 A344305 * A344307 A344308 A344309

KEYWORD

nonn,mult

AUTHOR

Seiichi Manyama, May 14 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 1 06:22 EST 2023. Contains 359981 sequences. (Running on oeis4.)