login
A344219
Number of cyclic subgroups of the group (C_n)^5, where C_n is the cyclic group of order n.
10
1, 32, 122, 528, 782, 3904, 2802, 8464, 9923, 25024, 16106, 64416, 30942, 89664, 95404, 135440, 88742, 317536, 137562, 412896, 341844, 515392, 292562, 1032608, 488907, 990144, 803804, 1479456, 732542, 3052928, 954306, 2167056, 1964932, 2839744, 2191164, 5239344, 1926222
OFFSET
1,2
COMMENTS
Inverse Moebius transform of A160893.
LINKS
László Tóth, On the number of cyclic subgroups of a finite abelian group, arXiv: 1203.6201 [math.GR], 2012.
FORMULA
a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n, x_5|n} phi(x_1)*phi(x_2)*phi(x_3)*phi(x_4)*phi(x_5)/phi(lcm(x_1, x_2, x_3, x_4, x_5)).
If p is prime, a(p) = 1 + (p^5 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)).
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3939461744... . (End)
MATHEMATICA
f[p_, e_] := 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 15 2022 *)
PROG
(PARI) a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, sumdiv(n, m, eulerphi(i)*eulerphi(j)*eulerphi(k)*eulerphi(l)*eulerphi(m)/eulerphi(lcm([i, j, k, l, m])))))));
(PARI) a160893(n) = sumdiv(n, d, moebius(n/d)*d^5)/eulerphi(n);
a(n) = sumdiv(n, d, a160893(d));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 12 2021
STATUS
approved