login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005903
Number of points on surface of dodecahedron: 30n^2 + 2 for n > 0.
(Formerly M5230)
2
1, 32, 122, 272, 482, 752, 1082, 1472, 1922, 2432, 3002, 3632, 4322, 5072, 5882, 6752, 7682, 8672, 9722, 10832, 12002, 13232, 14522, 15872, 17282, 18752, 20282, 21872, 23522, 25232, 27002, 28832, 30722, 32672, 34682, 36752, 38882, 41072, 43322, 45632, 48002
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. S. M. Coxeter, Polyhedral Numbers, in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558.
FORMULA
G.f.: (1+x)*(1+28*x+x^2)/(1-x)^3. - Simon Plouffe (see MAPLE line)
Sum_{n>=0} 1/a(n) = 3/4 + Pi*sqrt(15)*coth(Pi/sqrt 15)/60 = 1.052567... - R. J. Mathar, Apr 27 2024
MAPLE
A005903:=-(z+1)*(z**2+28*z+1)/(z-1)**3; [Simon Plouffe in his 1992 dissertation.]
MATHEMATICA
Join[{1}, 30 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
PROG
(PARI) a(n) = if (n==0, 1, 30*n^2+2); \\ Michel Marcus, Mar 04 2014
CROSSREFS
Cf. A206399.
Sequence in context: A223314 A203965 A203958 * A344219 A271532 A264480
KEYWORD
nonn,easy
AUTHOR
STATUS
approved