Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M5230 #42 Apr 27 2024 15:03:23
%S 1,32,122,272,482,752,1082,1472,1922,2432,3002,3632,4322,5072,5882,
%T 6752,7682,8672,9722,10832,12002,13232,14522,15872,17282,18752,20282,
%U 21872,23522,25232,27002,28832,30722,32672,34682,36752,38882,41072,43322,45632,48002
%N Number of points on surface of dodecahedron: 30n^2 + 2 for n > 0.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Bruno Berselli, <a href="/A005903/b005903.txt">Table of n, a(n) for n = 0..1000</a>
%H H. S. M. Coxeter, <a href="http://dx.doi.org/10.1007/978-94-010-2115-9_4">Polyhedral Numbers</a>, in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H B. K. Teo and N. J. A. Sloane, <a href="http://neilsloane.com/doc/magic1/magic1.html">Magic numbers in polygonal and polyhedral clusters</a>, Inorgan. Chem. 24 (1985),4545-4558.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: (1+x)*(1+28*x+x^2)/(1-x)^3. - _Simon Plouffe_ (see MAPLE line)
%F Sum_{n>=0} 1/a(n) = 3/4 + Pi*sqrt(15)*coth(Pi/sqrt 15)/60 = 1.052567... - _R. J. Mathar_, Apr 27 2024
%p A005903:=-(z+1)*(z**2+28*z+1)/(z-1)**3; [_Simon Plouffe_ in his 1992 dissertation.]
%t Join[{1}, 30 Range[40]^2 + 2] (* _Bruno Berselli_, Feb 07 2012 *)
%o (PARI) a(n) = if (n==0, 1, 30*n^2+2); \\ _Michel Marcus_, Mar 04 2014
%Y Cf. A206399.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.