login
A247155
31n^2 + 1
0
32, 125, 280, 497, 776, 1117, 1520, 1985, 2512, 3101, 3752, 4465, 5240, 6077, 6976, 7937, 8960, 10045, 11192, 12401, 13672, 15005, 16400, 17857, 19376, 20957, 22600, 24305, 26072, 27901, 29792, 31745, 33760, 35837, 37976, 40177, 42440, 44765, 47152, 49601, 52112, 54685, 57320, 60017, 62776, 65597, 68480, 71425, 74432, 77501, 80632, 83825, 87080, 90397, 93776, 97217, 100720, 104285, 107912, 111601, 115352, 119165, 123040, 126977, 130976, 135037, 139160, 143345, 147592, 151901, 156272, 160705, 165200, 169757, 174376, 179057, 183800, 188605, 193472, 198401, 203392, 208445, 213560, 218737, 223976, 229277, 234640, 240065, 245552, 251101, 256712, 262385, 268120, 273917, 279776, 285697, 291680, 297725, 303832
OFFSET
1,1
FORMULA
a(1)=32, a(2)=125, a(3)=280, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Apr 28 2016
MATHEMATICA
31*Range[100]^2+1 (* or *) LinearRecurrence[{3, -3, 1}, {32, 125, 280}, 100] (* Harvey P. Dale, Apr 28 2016 *)
PROG
IDLE - Python
(PARI) a(n)=31*n^2+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A344219 A271532 A264480 * A239728 A244082 A033323
KEYWORD
nonn,easy
AUTHOR
Garrett Backer, Nov 21 2014
STATUS
approved