OFFSET
1,2
COMMENTS
Inverse Moebius transform of A160891. - Seiichi Manyama, May 12 2021
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
László Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011), 97-110.
László Tóth, On the number of cyclic subgroups of a finite abelian group, arXiv: 1203.6201 [math.GR], 2012.
FORMULA
a(n) = Sum_{a|n, b|n, c|n, d|n} phi(a)*phi(b)*phi(c)*phi(d)/phi(lcm(a, b, c, d)), where phi is Euler totient function (cf. A000010).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + (p^3 + p^2 + p + 1)*((p^(3*e) - 1)/(p^3 - 1)).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.5010902655... . (End)
a(n) = Sum_{d divides n} J_4(d)/phi(d) = Sum_{1 <= i, j, k, l <= n} 1/phi(n/gcd(i,j,k,l,n)), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 23 2024
MAPLE
with(numtheory):
# define Jordan totient function J(r, n)
J(r, n) := add(d^r*mobius(n/d), d in divisors(n)):
seq(add(J(4, d)/phi(d), d in divisors(n)), n = 1..50); # Peter Bala, Jan 23 2024
MATHEMATICA
a[n_] := With[{dd = Divisors[n]}, Sum[Times @@ EulerPhi @ {x, y, z, t} / EulerPhi[LCM[x, y, z, t]], {x, dd}, {y, dd}, {z, dd}, {t, dd}]];
Array[a, 50] (* Jean-François Alcover, Sep 28 2018 *)
f[p_, e_] := 1 + (p^3 + p^2 + p + 1)*((p^(3*e) - 1)/(p^3 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 15 2022 *)
PROG
(PARI) a(n) = sumdiv(n, x, sumdiv(n, y, sumdiv(n, z, sumdiv(n, t, eulerphi(x)*eulerphi(y)*eulerphi(z)*eulerphi(t)/eulerphi(lcm([x, y, z, t])))))); \\ Michel Marcus, Feb 26 2018
(PARI) a160891(n) = sumdiv(n, d, moebius(n/d)*d^4)/eulerphi(n);
a(n) = sumdiv(n, d, a160891(d)); \\ Seiichi Manyama, May 12 2021
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Laszlo Toth, Dec 28 2016
STATUS
approved