OFFSET
1,2
COMMENTS
Also positive integers y in the solutions to 2*x^2 - 9*y^2 + 9*y - 2 = 0, the corresponding values of x being A046176.
Consider all ordered triples of consecutive integers (k, k+1, k+2) such that k is a square and k+1 is twice a square; then the values of k are the squares of the NSW numbers (A002315), the values of k+1 are twice the squares of the odd Pell numbers (A001653), and the values of k+2 are thrice the terms of this sequence. (See the Example section.) - Jon E. Schoenfield, Sep 06 2019
LINKS
Colin Barker, Table of n, a(n) for n = 1..650
Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
FORMULA
a(n) = (6 + (3-2*sqrt(2))*(17+12*sqrt(2))^(-n) + (3+2*sqrt(2))*(17+12*sqrt(2))^n) / 12.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)).
E.g.f.: -1+(1/12)*(6*exp(x)+(3-2*sqrt(2))*exp((17-12*sqrt(2))*x)+(3+2*sqrt(2))*exp((17+12*sqrt(2))*x)). - Stefano Spezia, Sep 08 2019
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2) = A156164. - Andrea Pinos, Oct 07 2022
EXAMPLE
17 is in the sequence because the 17th centered 9-gonal number is 1225, which is also the 35th square.
From Jon E. Schoenfield, Sep 06 2019: (Start)
The following table illustrates the relationship between the NSW numbers (A002315), the odd Pell numbers (A001653), and the terms of this sequence:
.
n | = 3*a(n) - 2 | = 3*a(n) - 1 | 3*a(n)
--+------------------+-------------------+-------------------
1 | 1^2 = 1 | 1^2*2 = 2 | 1*3 = 3
2 | 7^2 = 49 | 5^2*2 = 50 | 17*3 = 51
3 | 41^2 = 1681 | 29^2*2 = 1682 | 561*3 = 1683
4 | 239^2 = 57121 | 169^2*2 = 57122 | 19041*3 = 57123
5 | 1393^2 = 1940449 | 985^2*2 = 1940450 | 646817*3 = 1940451
(End)
MATHEMATICA
LinearRecurrence[{35, -35, 1}, {1, 17, 561}, 50] (* G. C. Greubel, Dec 28 2016 *)
PROG
(PARI) Vec(x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)) + O(x^20))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 28 2016
STATUS
approved