OFFSET
0,2
COMMENTS
In general the e.g.f. of {(1 + 3*m)^n}_{m>=0} is E(n,x) = exp(x)*Sum_{m=0..n} A282629(n, m)*x^m, and the o.g.f. is G(n, x) = (Sum_{m=0..n} A225117(n, n-m)*x^m)/(1-x)^(n+1). - Wolfdieter Lang, Apr 02 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, May 13 2012
From Wolfdieter Lang, Apr 02 2017: (Start)
O.g.f.: (1+1018*x+10678*x^2+14498*x^3+2933*x^4+32*x^5)/(1-x)^6.
E.g.f: exp(x)*(1+1023*x+7380*x^2+8775*x^3+2835*x^4+243*x^5). (End)
Sum_{n>=0} 1/a(n) = 2*Pi^5/(3^6*sqrt(3)) + 121*zeta(5)/3^5. - Amiram Eldar, Mar 29 2022
MATHEMATICA
(3Range[0, 20]+1)^5 (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 1024, 16807, 100000, 371293, 1048576}, 30] (* Harvey P. Dale, May 13 2012 *)
PROG
(Magma) [(3*n+1)^5: n in [0..30]]; // Vincenzo Librandi, Sep 21 2011
(Maxima) A016781(n):=(3*n+1)^5$
makelist(A016781(n), n, 0, 20); /* Martin Ettl, Nov 12 2012 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved