login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016779
a(n) = (3*n + 1)^3.
19
1, 64, 343, 1000, 2197, 4096, 6859, 10648, 15625, 21952, 29791, 39304, 50653, 64000, 79507, 97336, 117649, 140608, 166375, 195112, 226981, 262144, 300763, 343000, 389017, 438976, 493039, 551368, 614125, 681472, 753571, 830584, 912673, 1000000, 1092727, 1191016
OFFSET
0,2
COMMENTS
The inverse binomial transform is 1, 63, 216, 162, 0, 0, 0 (0 continued). R. J. Mathar, May 07 2008
Perfect cubes with digital root 1 in base 10. Proof: perfect cubes are one of (3*s)^3, (3*s+1)^3 or (3*s+2)^3. Digital roots of (3*s)^3 are 0, digital roots of (3*s+1)^3 are 1, and digital roots of (3*s+2)^3 are 8, using trinomial expansion and the multiplicative property of digits roots. - R. J. Mathar, Jul 31 2010
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.3.
Amarnath Murthy, Fabricating a perfect cube with a given valid digit sum (to be published)
FORMULA
Sum_{n>=0} 1/a(n) = 2*Pi^3 / (81*sqrt(3)) + 13*zeta(3)/27.
O.g.f.: (1+60*x+93*x^2+8*x^3)/(1-x)^4. - R. J. Mathar, May 07 2008
E.g.f.: (1 + 63*x + 108*x^2 + 27*x^3)*exp(x). - Ilya Gutkovskiy, Jun 16 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 02 2020
Sum_{n>=1} (-1)^n/a(n) = A226735. - R. J. Mathar, Feb 07 2024
EXAMPLE
a(2) = (3*2+1)^3 = 343.
a(6) = (3*6+1)^3 = 6859.
MATHEMATICA
Table[(3n+1)^3, {n, 0, 100}] (* Mohammad K. Azarian, Jun 15 2016 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 64, 343, 1000}, 40] (* Harvey P. Dale, Oct 31 2016 *)
PROG
(PARI) { b=0; for (n=0, 1000, until (s==1, b++; s=b^3; s-=9*(s\9)); write("b016779.txt", n, " ", b^3) ) } \\ Harry J. Smith, Jul 18 2009
(Magma) [(3*n+1)^3: n in [0..30]]; // Vincenzo Librandi, May 09 2011
(PARI) a(n)=(3*n+1)^3 \\ Charles R Greathouse IV, Jan 02 2012
CROSSREFS
Sequence in context: A186441 A297642 A061102 * A298220 A299349 A299096
KEYWORD
nonn,easy
STATUS
approved