login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054966
Numbers that are congruent to {0, 1, 8} mod 9.
9
0, 1, 8, 9, 10, 17, 18, 19, 26, 27, 28, 35, 36, 37, 44, 45, 46, 53, 54, 55, 62, 63, 64, 71, 72, 73, 80, 81, 82, 89, 90, 91, 98, 99, 100, 107, 108, 109, 116, 117, 118, 125, 126, 127, 134, 135, 136, 143, 144, 145, 152, 153, 154, 161, 162, 163, 170, 171, 172, 179, 180
OFFSET
1,3
COMMENTS
n == n^3 mod 9, so the iterated sum of the decimal digits of n and n^3 are equal.
REFERENCES
H. I. Okagbue, M.O.Adamu, S.A. Bishop and A.A. Opanuga, Properties of Sequences Generated by Summing the Digits of Cubed Positive Integers, Indian Journal Of Natural Sciences, Vol. 6 / Issue 32 / October 2015
FORMULA
G.f.: x^2*(1+7*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 3*n-3+2*cos(2*n*Pi/3)+2*sin(2*n*Pi/3)/sqrt(3).
a(3k) = 9k-1, a(3k-1) = 9k-8, a(3k-2) = 9k-9. (End)
A008591 UNION A056020. - R. J. Mathar, Jul 19 2024
a(n) -a(n-1) = A105395(n+1), n>1. - R. J. Mathar, Jul 19 2024
MAPLE
A054966:=n->3*n-3+2*cos(2*n*Pi/3)+2*sin(2*n*Pi/3)/sqrt(3): seq(A054966(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 1, 8}, Mod[#, 9]] &] (* Wesley Ivan Hurt, Jun 14 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 1, 8, 9}, 100] (* Vincenzo Librandi, Jun 15 2016 *)
PROG
(Magma) [n : n in [0..200] | n mod 9 in [0, 1, 8]]; // Wesley Ivan Hurt, Jun 14 2016
CROSSREFS
Cf. A047523. Complement of A275910.
Sequence in context: A334728 A070480 A135043 * A130881 A235399 A283628
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, May 24 2000
STATUS
approved