login
A054967
Numbers that are congruent to {0, 1, 9} mod 10.
2
0, 1, 9, 10, 11, 19, 20, 21, 29, 30, 31, 39, 40, 41, 49, 50, 51, 59, 60, 61, 69, 70, 71, 79, 80, 81, 89, 90, 91, 99, 100, 101, 109, 110, 111, 119, 120, 121, 129, 130, 131, 139, 140, 141, 149, 150, 151, 159, 160, 161, 169, 170, 171, 179, 180, 181, 189, 190, 191, 199
OFFSET
1,3
COMMENTS
Numbers with last digit 0, 1, or 9. - Wesley Ivan Hurt, Jun 14 2016
FORMULA
G.f.: x^2*(x^2+8*x+1)/((x-1)^2*(x^2+x+1)). - Robert Israel, Feb 23 2016
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. - Vincenzo Librandi, Feb 24 2016
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = (30*n-30+21*cos(2*n*Pi/3)+7*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 10k-1, a(3k-1) = 10k-9, a(3k-2) = 10k-10. (End)
MAPLE
seq(seq(10*i+j, j=[0, 1, 9]), i=0..30); # Robert Israel, Feb 23 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 1, 9}, Mod[#, 10]] &] (* or *) LinearRecurrence[{1, 0, 1, -1}, {0, 1, 9, 10}, 60] (* Vincenzo Librandi, Feb 24 2016 *)
PROG
(Magma) [n: n in [0..200] | n mod 10 in [0, 1, 9]]; // Vincenzo Librandi, Feb 24 2016
CROSSREFS
Cf. A047523.
Sequence in context: A168042 A342147 A045522 * A227801 A048031 A048013
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, May 24 2000
STATUS
approved