login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344309
a(n) is the number of eigensequences (including eigenvalues, where they exist) of the Fibonacci recurrence in Zp where p is prime(n).
1
0, 0, 1, 0, 2, 1, 1, 2, 0, 3, 2, 1, 3, 0, 2, 1, 2, 5, 0, 2, 1, 2, 0, 9, 1, 3, 0, 2, 5, 5, 0, 2, 1, 4, 5, 4, 1, 0, 0, 1, 2, 3, 2, 1, 1, 10, 6, 0, 0, 3, 17, 2, 3, 2, 1, 2, 5, 2, 1, 11, 0, 1, 6, 2, 1, 1, 4, 1, 2, 3, 5, 2, 0, 1, 2, 0, 5, 1, 5, 3, 2, 21, 2, 1, 2, 0
OFFSET
1,5
COMMENTS
It appears that the indices m where a(m) = 0 give A270532.
LINKS
M. Aoki, Y. Sakai, On Equivalence Classes of Generalized Fibonacci Sequences, JIS vol 19 (2016) # 16.2.6
H. Sedaghat, Zero-Avoiding Solutions of the Fibonacci Recurrence Modulo A Prime, Fibonacci Quart. 52 (2014), no. 1, 39-45. See p. 44.
FORMULA
a(n) = E(p)/(p-1) where p is prime(n) and E(p) = 4 if p=5; (p-1)^2/ep(n) + p - 1 if p==1 or 4 (mod 5); (p^2-1)/ep(n) + 1 - p if p==2 or 3 (mod 5), where ep(n) = A001602(n).
MAPLE
A344309 := proc(i)
local p, F ;
p := ithprime(i) ;
for n from 1 do
F := combinat[fibonacci](n) ;
if modp(F, p) =0 then
if modp(p, 5) in {2, 3} then
return (p+1)/n-1 ;
elif modp(p, 5) in {1, 4} then
return (p-1)/n+1 ;
else
return 1 ;
end if;
end if;
end do:
end proc;
seq(A344309(n), n=1..55) ; # R. J. Mathar, Feb 27 2023
PROG
(PARI) ep(n) = if(n==3, 5, my(p=prime(n)); fordiv(p^2-1, d, if(fibonacci(d)%p==0, return(d)))); \\ A001602
a(n) = {my(p=prime(n), mp = p % 5); my(x=if ((mp==0), 4, if ((mp==1) || (mp==4), (p-1)^2/ep(n) + p - 1, (p^2-1)/ep(n) + 1 - p))); x/(p-1); }
CROSSREFS
Sequence in context: A374191 A088226 A376542 * A358338 A244658 A117586
KEYWORD
nonn
AUTHOR
Michel Marcus, May 14 2021
STATUS
approved