login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342463
a(n) = A342001(A342456(n)); "wild part" of the arithmetic derivative of A342456(n).
6
1, 1, 1, 2, 1, 2, 12, 8, 1, 2, 6, 4, 50, 24, 16, 16, 1, 2, 6, 4, 126, 62, 46, 26, 1486, 100, 1142, 48, 2056, 32, 342, 10, 1, 2, 6, 4, 94, 24, 72, 18, 242, 120, 1588, 54, 3408, 92, 1740, 22, 6846, 2972, 4340, 766, 5048, 1374, 652, 376, 71156, 22710, 20390, 64, 738580, 4272, 568, 20, 1, 2, 6, 4, 264, 12, 196, 8, 318
OFFSET
0,4
COMMENTS
Like in A342462, also here the subsequences starting at each n = 2^k seem to be slowly converging towards A329886: 1, 2, 6, 4, 30, 12, 36, 8, 210, 60, ...
FORMULA
a(n) = A342001(A342456(n)) = A342002(A329886(n)) = A342920(A005940(1+n)).
MATHEMATICA
Block[{a, f, r = MixedRadix[Reverse@ Prime@ Range@ 24]}, f[n_] := Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ IntegerDigits[n, r]]; a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ@ n, (Times @@ Map[Prime[PrimePi@ #1 + 1]^#2 & @@ # &, FactorInteger[#]] - Boole[# == 1])*2^IntegerExponent[#, 2] &[a[n/2]], 2 a[(n - 1)/2]]; Array[#1/#2 & @@ {If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ Abs[#], #/Times @@ FactorInteger[#][[All, 1]]} &@ f@ a[#] &, 73, 0]] (* Michael De Vlieger, Mar 17 2021 *)
PROG
(PARI)
\\ Needs also code from A342456.
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A342001(n) = (A003415(n) / A003557(n));
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Mar 15 2021
STATUS
approved