login
A342466
a(n) = A336466(1+A000265(sigma(n))), where A336466 is fully multiplicative with a(p) = A000265(p-1) for p prime, and A000265(k) is the odd part of k.
2
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 11, 1, 1, 1, 11, 5, 1, 1, 5, 1, 1, 1, 1, 7, 23, 1, 1, 3, 1, 1, 1, 1, 11, 1, 5, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 9, 9, 7, 1, 1, 1, 5, 1, 23, 15, 1, 5, 1, 3, 1, 1, 11, 11, 29, 1, 5, 1, 1, 1, 1, 1, 21, 1, 27, 3, 3, 3, 13, 1
OFFSET
1,9
FORMULA
a(n) = A336466(A336698(n)) = A336466(A337194(n)).
a(n) = A000265(A003958(1+A161942(n))).
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, (A000265(f[k, 1]-1))^f[k, 2])); };
A337194(n) = (1+A000265(sigma(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 16 2021
STATUS
approved