login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368711
The maximal exponent in the prime factorization of the exponentially odd numbers (A268335).
8
0, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1
OFFSET
1,7
COMMENTS
Differs from A368472 at n = 1, 154, 610, 707, 762, ... .
LINKS
FORMULA
a(n) = A051903(A268335(n)).
a(n) is odd for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum_{k>=1} (1 - Product_{p prime} (1 - 1/(p^(2*k-1)*(p^2+p-1)))) = 1.34877064483679975726... .
MATHEMATICA
f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
PROG
(PARI) lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(vecprod(e)%2, print1(vecmax(e), ", "))); }
CROSSREFS
Similar sequences: A368710, A368712, A368713.
Sequence in context: A070670 A372466 A368472 * A049586 A342466 A133721
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jan 04 2024
STATUS
approved