login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368709
a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], +2).
2
1, 1, -1, -3, 13, 17, -241, 121, 5081, -13327, -106705, 609589, 1850661, -23392159, -6796193, 811545073, -1688514383, -25224774367, 123764707231, 650087614573, -6385330335427, -9591188592399, 279171512779759, -318526766092183, -10665705513959287, 40625771132796817
OFFSET
0,4
FORMULA
a(n) = (-1/2)*B(n, -2) where B(n, x) are the Baxter polynomials with coefficients A359363, for n > 0. - Peter Luschny, Jan 04 2024
a(0) = 1, a(n) = (-1)^n*2^(n + 1)/(n*(n + 1)^2)*Sum_{k=1..n} (-1/2)^k*binomial(n + 1, k - 1)*binomial(n + 1, k)*binomial(n + 1, k + 1). - Detlef Meya, May 29 2024
MATHEMATICA
Table[HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, 2], {n, 0, 30}] (* Vaclav Kotesovec, Jan 04 2024 *)
a[0] := 1; a[n_] := (-1)^n*2^(n + 1)/(n*(n + 1)^2)*Sum[(-1/2)^k*Binomial[n + 1, k - 1]*Binomial[n + 1, k]*Binomial[n + 1, k + 1], {k , 1, n}]; Table[a[n], {n, 0, 25}] (* Detlef Meya, May 29 2024 *)
PROG
(SageMath)
def A368709(n): return PolyA359363(n, -2) // (-2) if n > 0 else 1
print([A368709(n) for n in range(0, 26)]) # Peter Luschny, Jan 04 2024
(Python)
def A368709(n):
if n == 0: return 1
return sum((-2)**k * v for k, v in enumerate(A359363Row(n))) // (-2)
print([A368709(n) for n in range(26)]) # Peter Luschny, Jan 04 2024
CROSSREFS
KEYWORD
sign
AUTHOR
Joerg Arndt, Jan 04 2024
STATUS
approved