OFFSET
0,4
FORMULA
a(n) = (-1/2)*B(n, -2) where B(n, x) are the Baxter polynomials with coefficients A359363, for n > 0. - Peter Luschny, Jan 04 2024
a(0) = 1, a(n) = (-1)^n*2^(n + 1)/(n*(n + 1)^2)*Sum_{k=1..n} (-1/2)^k*binomial(n + 1, k - 1)*binomial(n + 1, k)*binomial(n + 1, k + 1). - Detlef Meya, May 29 2024
MATHEMATICA
Table[HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, 2], {n, 0, 30}] (* Vaclav Kotesovec, Jan 04 2024 *)
a[0] := 1; a[n_] := (-1)^n*2^(n + 1)/(n*(n + 1)^2)*Sum[(-1/2)^k*Binomial[n + 1, k - 1]*Binomial[n + 1, k]*Binomial[n + 1, k + 1], {k , 1, n}]; Table[a[n], {n, 0, 25}] (* Detlef Meya, May 29 2024 *)
PROG
(SageMath)
def A368709(n): return PolyA359363(n, -2) // (-2) if n > 0 else 1
print([A368709(n) for n in range(0, 26)]) # Peter Luschny, Jan 04 2024
(Python)
def A368709(n):
if n == 0: return 1
return sum((-2)**k * v for k, v in enumerate(A359363Row(n))) // (-2)
print([A368709(n) for n in range(26)]) # Peter Luschny, Jan 04 2024
CROSSREFS
KEYWORD
sign
AUTHOR
Joerg Arndt, Jan 04 2024
STATUS
approved