login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], +2).
2

%I #21 Jun 20 2024 05:29:29

%S 1,1,-1,-3,13,17,-241,121,5081,-13327,-106705,609589,1850661,

%T -23392159,-6796193,811545073,-1688514383,-25224774367,123764707231,

%U 650087614573,-6385330335427,-9591188592399,279171512779759,-318526766092183,-10665705513959287,40625771132796817

%N a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], +2).

%F a(n) = (-1/2)*B(n, -2) where B(n, x) are the Baxter polynomials with coefficients A359363, for n > 0. - _Peter Luschny_, Jan 04 2024

%F a(0) = 1, a(n) = (-1)^n*2^(n + 1)/(n*(n + 1)^2)*Sum_{k=1..n} (-1/2)^k*binomial(n + 1, k - 1)*binomial(n + 1, k)*binomial(n + 1, k + 1). - _Detlef Meya_, May 29 2024

%t Table[HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, 2], {n, 0, 30}] (* _Vaclav Kotesovec_, Jan 04 2024 *)

%t a[0] := 1; a[n_] := (-1)^n*2^(n + 1)/(n*(n + 1)^2)*Sum[(-1/2)^k*Binomial[n + 1, k - 1]*Binomial[n + 1, k]*Binomial[n + 1, k + 1], {k , 1, n}]; Table[a[n], {n, 0, 25}] (* _Detlef Meya_, May 29 2024 *)

%o (SageMath)

%o def A368709(n): return PolyA359363(n, -2) // (-2) if n > 0 else 1

%o print([A368709(n) for n in range(0, 26)]) # _Peter Luschny_, Jan 04 2024

%o (Python)

%o def A368709(n):

%o if n == 0: return 1

%o return sum((-2)**k * v for k, v in enumerate(A359363Row(n))) // (-2)

%o print([A368709(n) for n in range(26)]) # _Peter Luschny_, Jan 04 2024

%Y Cf. A368708, A001181, A007724, A217800, A359363.

%K sign

%O 0,4

%A _Joerg Arndt_, Jan 04 2024