login
A324121
a(n) = gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n (A000005) and sigma(n) = sum of divisors of n (A000203).
10
1, 1, 2, 1, 2, 12, 2, 1, 1, 2, 2, 4, 2, 8, 12, 1, 2, 3, 2, 6, 4, 4, 2, 12, 1, 2, 4, 56, 2, 24, 2, 3, 12, 2, 4, 1, 2, 4, 4, 10, 2, 48, 2, 12, 6, 8, 2, 4, 3, 3, 12, 2, 2, 24, 4, 8, 4, 2, 2, 24, 2, 8, 2, 1, 4, 48, 2, 6, 12, 16, 2, 3, 2, 2, 2, 4, 4, 24, 2, 2, 1, 2, 2, 112, 4, 4, 12, 4, 2, 18, 28, 24, 4, 8, 20, 36, 2, 3, 6, 1, 2, 24, 2, 2, 24
OFFSET
1,3
COMMENTS
Records 1, 2, 12, 56, 112, 120, 336, 720, 992, 2016, 4368, 8640, 14880, 16256, 26208, 59520, 78624, 120960, 131040, 191520, 227584, 297600, ... occur at positions: 1, 3, 6, 28, 84, 120, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 27846, 30240, 32760, 55860, 105664, 117800, ... . Note that A001599 is not a subsequence of the latter, as at least 18620 (present in A001599) is missing.
FORMULA
a(n) = gcd(A000203(n), A038040(n)).
a(n) = A324058(A156552(n)).
MATHEMATICA
Table[GCD[n DivisorSigma[0, n], DivisorSigma[1, n]], {n, 120}] (* Harvey P. Dale, Feb 17 2023 *)
PROG
(PARI) A324121(n) = gcd(sigma(n), n*numdiv(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 15 2019
STATUS
approved