login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324124
Triangle T(n,k), read by rows: coefficients for numerical integration near a singularity (n >= 0 and 0 <= k <= n).
6
1, 1, 2, 1, 8, 6, 8, 18, 45, 34, 31, 224, 24, 416, 250, 161, 460, 840, 40, 1685, 972, 1588, 12312, -3870, 26480, -7965, 31032, 15498, 14445, 49784, 79086, -41160, 214865, -76440, 229026, 109544, 530095, 4469632, -3257376, 14249344, -13403240, 20311680, -8258912, 13856896, 5961306
OFFSET
0,3
LINKS
Petros Hadjicostas, Maple program.
Yudell L. Luke, Mechanical quadrature near a singularity, Math. Comp. 6 (1952), 215-219.
FORMULA
From Petros Hadjicostas, Oct 29 2019: (Start)
Let S(n) = Sum_{k = 0..n} T(n,k) = A328866(n) for n >= 0. Then the n-th row satisfies the equations Sum_{r = 0..n} T(n,n-r) * r^m = S(n)*n^m/(2*m+1) for m = 0, 1, ..., n.
Note that, if c is a positive integer and T^*(n,k) := c * T(n,k) and S^*(n) := Sum_{k = 0..n} T^*(n,k) = c * S(n), then the new array T^*(n,k) satisfies the same equations and can also be used for the quadrature described in Luke (1952). The reason is that T^*(n,k)/S^*(n) = T(n,k)/S(n) and in Eq. (1), on p. 215 of his paper, what matters is the ratio gamma_r^(n)/D_n = T(n, n-r)/S(n) = T^*(n, n-r)/S^*(n). [Note that the only place in Luke (1952) where gamma_r^(n) is not divided by D_n is in Eq. (6) on p. 216, but that is clearly a typo!]
To make the definition of the array T(n,k) unique, we need to impose a restriction on the sum S(n). Since in each row we are dealing with the fractions T(n,k)/S(n) for k = 0..n and Sum_{k = 0..n} T(n,k)/S(n) = 1, a reasonable assumption is to require S(n) to be the LCM of the denominators of the fractions (T(n,k)/S(n), k = 0..n) in lowest terms. This is done by Luke (1952) (on p. 217 of his paper) for 1 <= n <= 10 except (unfortunately) for n = 7.
For n = 7, Luke (1952) uses the fractions (101115, 348488, 553602, -288120, 1504055, -535080, 1603182, 766808)/4054050, which in lowest terms become (107/4290, 24892/289575, 13181/96525, -1372/19305, 42973/115830, -196/1485, 38171/96525, 54772/289575). The LCM of these denominators is 579150, which is a divisor of 4054050. Putting these fractions under the common denominator 579150, we get (14445, 49784, 79086, -41160, 214865, -76440, 229026, 109544)/579150. We use the numerators of these fractions in this array for (T(n=7, k): k = 0..7).
(End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1;
1, 2;
1, 8, 6;
8, 18, 45, 34;
31, 224, 24, 416, 250;
161, 460, 840, 40, 1685, 972;
1588, 12312, -3870, 26480, -7965, 31032, 15498;
14445, 49784, 79086, -41160, 214865, -76440, 229026, 109544;
... [Edited by Petros Hadjicostas, Oct 29 2019]
From Petros Hadjicostas, Oct 29 2019: (Start)
Consider row n=3. We have T(n,0) = 8, T(n,1) = 18, T(n,2) = 45, and T(n,3) = 34 with S(n) = 8 + 18 + 45 + 34 = 105 = A328866(3). We then have the following four equations:
8*3^0 + 18*2^0 + 45*1^0 + 34*0^0 = S(3)*3^0/(2*0+1);
8*3^1 + 18*2^1 + 45*1^1 + 34*0^1 = S(3)*3^1/(2*1+1);
8*3^2 + 18*2^2 + 45*1^2 + 34*0^2 = S(3)*3^2/(2*2+1);
8*3^3 + 18*2^3 + 45*1^3 + 34*0^3 = S(3)*3^3/(2*3+1).
(End)
CROSSREFS
A002685 and A002686 give the first two diagonals (except for the elements of row n=7 of this array). Improved versions of these two sequences appear in A328884 and A328885, respectively.
Row sums appear in A328866.
Sequence in context: A198577 A011135 A324775 * A019816 A214562 A280757
KEYWORD
sign,tabl
AUTHOR
N. J. A. Sloane, Feb 15 2019
EXTENSIONS
Name edited by and more terms from Petros Hadjicostas, Oct 29 2019
Row n=7 from Luke (1952) was modified by Petros Hadjicostas, Oct 29 2019
STATUS
approved