login
A340207
Constant whose decimal expansion is the concatenation of the largest n-digit square A061433(n), for n = 1, 2, 3, ...
7
9, 8, 1, 9, 6, 1, 9, 8, 0, 1, 9, 9, 8, 5, 6, 9, 9, 8, 0, 0, 1, 9, 9, 9, 8, 2, 4, 4, 9, 9, 9, 8, 0, 0, 0, 1, 9, 9, 9, 9, 5, 0, 8, 8, 4, 9, 9, 9, 9, 8, 0, 0, 0, 0, 1, 9, 9, 9, 9, 9, 5, 1, 5, 5, 2, 9, 9, 9, 9, 9, 9, 8, 0, 0, 0, 0, 0, 1, 9, 9, 9, 9, 9, 9, 5, 8
OFFSET
0,1
COMMENTS
The terms of sequence A339978 converge to this sequence of digits, and to this constant, up to powers of 10.
LINKS
FORMULA
c = 0.9819619801998569980019998244999800019999508849999800001999995155...
= Sum_{k >= 1} 10^(-k(k+1)/2)*floor(10^(k/2)-1)^2
a(-n(n+1)/2) = 9 for all n >= 2.
EXAMPLE
The largest square with 1, 2, 3, 4, ... digits is, respectively, 9 = 3^2, 81 = 9^2, 961 = 31^2, 9801 = 99^2, ....
Here we list the sequence of digits of these numbers: 9; 8, 1; 9, 6, 1; 9, 8, 0, 1; 9, 9, 8, 5, 6; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.98196198...
MATHEMATICA
lnds[k_]:=Module[{c=Sqrt[10^k]}, If[IntegerQ[c], (c-1)^2, Floor[c]^2]]; Flatten[IntegerDigits/@(lnds/@Range[15])] (* Harvey P. Dale, Dec 16 2021 *)
PROG
(PARI) concat([digits(sqrtint(10^k-1)^2)|k<-[1..14]]) \\ as seq. of digits
c(N=20)=sum(k=1, N, .1^(k*(k+1)/2)*sqrtint(10^k-1)^2) \\ as constant
CROSSREFS
Cf. A061433 (largest n-digit square), A339978 (has this as "limit"), A340208 (same with "smallest n-digit cube", limit of A215692), A340209 (same for cubes, limit of A340115), A340220 (same for primes), A340219 (similar, with smallest primes, limit of A215641), A340222 (same for semiprimes), A340221 (same for smallest semiprimes, limit of A215647).
Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant).
Sequence in context: A244978 A114864 A261025 * A185260 A275615 A249677
KEYWORD
nonn,base,cons
AUTHOR
M. F. Hasler, Jan 01 2021
STATUS
approved