login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339978 a(n) is the largest prime whose decimal expansion consists of the concatenation of a 1-digit square, a 2-digit square, a 3-digit square, ..., and an n-digit square, or 0 if there is no such prime. 9
0, 449, 981961, 9819619801, 981961980196721, 981961980199856194481, 9819619801998569980018946081, 981961980199856998001999824499740169, 981961980199856998001999824499980001989039601, 9819619801998569980019998244999800019999508849977812321 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If a(n) exists it has A000217(n)= n*(n+1)/2 digits.

All the terms end with 1 or 9.

LINKS

David A. Corneth, Table of n, a(n) for n = 1..40 (first 16 terms from Michael S. Branicky)

EXAMPLE

a(1) = 0 because no 1-digit square {0, 1, 4, 9} is prime.

a(2) = 449 because 464, 481, 916, 925, 936, 949, 964, and 981 are not primes and 449, concatenation of 4 = 2^2 with 49 = 7^2, is prime.

a(4) = 9819619801, which is a prime is the concatenation of 9 = 3^2 with 81 = 9^2, then 961 = 31^2 and 9801 = 99^2. Observation, 9, 81, 961 and 9801 are the largest squares with respectively 1, 2, 3 and 4 digits.

PROG

(Python)

from sympy import isprime

from itertools import product

def a(n):

  squares = [str(k*k) for k in range(1, int((10**n)**.5)+2)]

  revsqrs = [[kk for kk in squares if len(kk)==i+1][::-1] for i in range(n)]

  for t in product(*revsqrs):

    intt = int("".join(t))

    if isprime(intt): return intt

  return 0

print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Dec 25 2020

CROSSREFS

Cf. A000290, A003618, A061433 (largest squares), A338968 (concatenate primes).

Sequence in context: A012169 A093402 A012062 * A079659 A304511 A202197

Adjacent sequences:  A339975 A339976 A339977 * A339979 A339980 A339981

KEYWORD

nonn,base

AUTHOR

Bernard Schott, Dec 25 2020

EXTENSIONS

a(5)-a(10) from Michael S. Branicky, Dec 25 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 08:27 EDT 2021. Contains 346464 sequences. (Running on oeis4.)