The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340204 a(n) is the smallest proper multiple of n whose digit product is the same as the digit product of n; 0 if no such number exists. 0
 11, 12, 1113, 212, 15, 132, 11711, 24, 11133, 20, 1111, 11112, 1131, 21112, 11115, 32, 71111, 11124, 133, 40, 11111121, 1122, 161, 14112, 125, 1612, 11111111172, 224, 3132, 60, 11111113, 1312, 11111133, 612, 315, 1332, 11137, 342, 11193, 80, 1111141, 11214, 11223 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Every odd integer k not ending with 5 has a multiple that is a repunit (see A099679), hence a(n) <= the concatenation of this repunit with this odd number (see example a(33)). LINKS Table of n, a(n) for n=1..43. FORMULA a(10*k) = 20*k. EXAMPLE a(16) = 32 because 32 is the smallest proper multiple of 16 such that 1*6 = 3*2. a(33) = 11111133 is the concatenation of 111111 (that is the smallest repunit multiple of 33) with 33. MATHEMATICA prodig[n_] := Times @@ IntegerDigits[n]; a[n_] := Module[{k = 2*n, p = prodig[n]}, While[prodig[k] != p, k += n]; k]; Array[a, 20] (* Amiram Eldar, Jan 15 2021 *) PROG (PARI) f(n) = vecprod(digits(n)); \\ A007954 a(n) = my(x = f(n), k = 2); while(f(k*n) != x, k++); k*n; \\ Michel Marcus, Jan 15 2021 (Python) from math import prod def pd(n): return prod(map(int, str(n))) def a(n): pdn, f = pd(n), 2 while pd(f*n) != pdn: f += 1 return f*n print([a(n) for n in range(1, 27)]) # Michael S. Branicky, Jan 16 2021 CROSSREFS Cf. A007954, A069035, A087304. Sequence in context: A056684 A042731 A087304 * A121808 A160265 A007651 Adjacent sequences: A340201 A340202 A340203 * A340205 A340206 A340207 KEYWORD nonn,base AUTHOR Bernard Schott, Jan 15 2021 EXTENSIONS More terms from Amiram Eldar, Jan 15 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 00:22 EDT 2024. Contains 371850 sequences. (Running on oeis4.)