login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332082
a(n) = Sum_{1 <= m <= n} Sum_{1 <= k <= n+1-m} m*R(k,n+1), where R(k,b) = (b^k - 1)/(b - 1) is the base-b repunit of length k.
1
0, 1, 7, 42, 295, 2675, 31122, 447188, 7661370, 152415765, 3452271185, 87693358654, 2468455488681, 76256200336407, 2564715882332660, 93281313241869480, 3647955866777821668, 152635100350763019705, 6803550294289868214315, 321844061970058547739730, 16103630469426364324556635
OFFSET
0,3
COMMENTS
This is the sum of all elements of a triangular matrix (of size n given by the index) where the k-th diagonal is filled with k-repdigits (in base n+1, as to have digits up to n) of increasing length, as in
( 1 0 0 . . . . . . . . 0 )
( 2 11 0 : )
( 3 22 111 ˙ · . : )
( : 33 222 ˙ · . ˙ · . : )
( : ˙ · . ˙ · . ˙ · . 0 )
( n . . . . . 3..3 2...2 1....1 )
with numbers written in base n+1.
EXAMPLE
a(2) = 2 + 1 + 11[3] = 3 + 4 = 7.
a(3) = 3 + 2 + 22[4] + 1 + 11[4] + 111[4] = 6 + 15 + 21 = 42.
a(4) = 4 + 3 + 33[5] + 2 + 22[5] + 222[5] + 1 + 11[5] + 111[5] + 1111[5] = 10 + 36 + 93 + 156 = 295.
MATHEMATICA
a[n_] := Sum[(n + 1 - m)*((n + 1)*((n + 1)^m - 1) - m*n)/n^2, {m, 1, n}]; Array[a, 21, 0] (* Amiram Eldar, Aug 24 2020 *)
PROG
(PARI) apply( {A332082(n)=sum(m=1, n, (n+1-m)*((n+1)*((n+1)^m-1)-m*n)\n^2)}, [0..20])
CROSSREFS
For base 10 repunits and repdigits, cf. A002275 (repunits), A010785 (repdigits) and A014824 (partial sums of repunits).
Sequence in context: A187246 A278152 A366222 * A271427 A073506 A025593
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Aug 19 2020
STATUS
approved