Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 19 2020 23:57:44
%S 0,1,7,42,295,2675,31122,447188,7661370,152415765,3452271185,
%T 87693358654,2468455488681,76256200336407,2564715882332660,
%U 93281313241869480,3647955866777821668,152635100350763019705,6803550294289868214315,321844061970058547739730,16103630469426364324556635
%N a(n) = Sum_{1 <= m <= n} Sum_{1 <= k <= n+1-m} m*R(k,n+1), where R(k,b) = (b^k - 1)/(b - 1) is the base-b repunit of length k.
%C This is the sum of all elements of a triangular matrix (of size n given by the index) where the k-th diagonal is filled with k-repdigits (in base n+1, as to have digits up to n) of increasing length, as in
%C ( 1 0 0 . . . . . . . . 0 )
%C ( 2 11 0 : )
%C ( 3 22 111 ˙ · . : )
%C ( : 33 222 ˙ · . ˙ · . : )
%C ( : ˙ · . ˙ · . ˙ · . 0 )
%C ( n . . . . . 3..3 2...2 1....1 )
%C with numbers written in base n+1.
%e a(2) = 2 + 1 + 11[3] = 3 + 4 = 7.
%e a(3) = 3 + 2 + 22[4] + 1 + 11[4] + 111[4] = 6 + 15 + 21 = 42.
%e a(4) = 4 + 3 + 33[5] + 2 + 22[5] + 222[5] + 1 + 11[5] + 111[5] + 1111[5] = 10 + 36 + 93 + 156 = 295.
%t a[n_] := Sum[(n + 1 - m)*((n + 1)*((n + 1)^m - 1) - m*n)/n^2, {m, 1, n}]; Array[a, 21, 0] (* _Amiram Eldar_, Aug 24 2020 *)
%o (PARI) apply( {A332082(n)=sum(m=1,n,(n+1-m)*((n+1)*((n+1)^m-1)-m*n)\n^2)}, [0..20])
%Y For base 10 repunits and repdigits, cf. A002275 (repunits), A010785 (repdigits) and A014824 (partial sums of repunits).
%K nonn,base
%O 0,3
%A _M. F. Hasler_, Aug 19 2020