OFFSET
1,4
FORMULA
a(n) = Sum_{d1|n, d2|n, d1 is prime, d1 <= d2} 1.
a(n) = A337320(n) + omega(n).
EXAMPLE
a(7) = 1; There are two divisors of 7: {1,7}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (7,7). So a(7) = 1.
a(8) = 3; There are 4 divisors of 8: {1,2,4,8}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (2,2), (2,4) and (2,8). So a(8) = 3.
a(9) = 2; There are three divisors of 9: {1,3,9}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (3,3) and (3,9). So a(9) = 2.
a(10) = 5; There are four divisors of 10: {1,2,5,10}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (2,2), (2,5), (2,10), (5,5) and (5,10). So a(10) = 5.
MATHEMATICA
Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 22 2020
STATUS
approved