login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330837
a(n) = M(n)^2*(M(n)+1)^2, where M(n) = A000668(n) is the n-th Mersenne prime.
3
144, 3136, 984064, 264257536, 4502500182851584, 295143401596905324544, 75557575495813049614336, 21267647912751613342506514584526913536, 28269553036454149248812831358032474524823101898744619883661101506865659904
OFFSET
1,1
COMMENTS
a(n+1) is the second element of the power-spectral basis of both A330836(n) and A330838(n). Also, a(n) = A139256(n)^2, where A139256(n) is the sum of the divisors of the n-th perfect number, A000396(n).
Also: squares of twice the perfect numbers. - M. F. Hasler, Feb 07 2020
LINKS
G. Sobczyk, The Missing Spectral Basis in Algebra and Number Theory, The American Mathematical Monthly 108(4), April 2001.
FORMULA
a(n) = A330824(n) * A133049(n).
a(n) = (2*A000396(n))^2 = (2^p-1)^2*4^p with p = A000043(n). - M. F. Hasler, Feb 07 2020
EXAMPLE
If p=3, then a(2) = (7*2^3)^2 = 56^2, and the spectral basis of A330836(1) = 4704 and A330838(1) = 9408 is {63^2, 56^2, 48^2}, consisting of powers.
MAPLE
a := proc(n::posint)
local p, m;
p:=NumberTheory[IthMersenne](n);
m:=2^p-1;
return m^2*(m+1)^2;
end:
MATHEMATICA
f[p_] := 2^(2p)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 12 2020 *)
PROG
(PARI) forprime(p=1, 999, isprime(2^p-1)&&print1((2^p-1)^2<<(2*p)", ")) \\ M. F. Hasler, Feb 07 2020
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jan 12 2020
STATUS
approved