login
A330837
a(n) = M(n)^2*(M(n)+1)^2, where M(n) = A000668(n) is the n-th Mersenne prime.
3
144, 3136, 984064, 264257536, 4502500182851584, 295143401596905324544, 75557575495813049614336, 21267647912751613342506514584526913536, 28269553036454149248812831358032474524823101898744619883661101506865659904
OFFSET
1,1
COMMENTS
a(n+1) is the second element of the power-spectral basis of both A330836(n) and A330838(n). Also, a(n) = A139256(n)^2, where A139256(n) is the sum of the divisors of the n-th perfect number, A000396(n).
Also: squares of twice the perfect numbers. - M. F. Hasler, Feb 07 2020
LINKS
G. Sobczyk, The Missing Spectral Basis in Algebra and Number Theory, The American Mathematical Monthly 108(4), April 2001.
FORMULA
a(n) = A330824(n) * A133049(n).
a(n) = (2*A000396(n))^2 = (2^p-1)^2*4^p with p = A000043(n). - M. F. Hasler, Feb 07 2020
EXAMPLE
If p=3, then a(2) = (7*2^3)^2 = 56^2, and the spectral basis of A330836(1) = 4704 and A330838(1) = 9408 is {63^2, 56^2, 48^2}, consisting of powers.
MAPLE
a := proc(n::posint)
local p, m;
p:=NumberTheory[IthMersenne](n);
m:=2^p-1;
return m^2*(m+1)^2;
end:
MATHEMATICA
f[p_] := 2^(2p)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 12 2020 *)
PROG
(PARI) forprime(p=1, 999, isprime(2^p-1)&&print1((2^p-1)^2<<(2*p)", ")) \\ M. F. Hasler, Feb 07 2020
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jan 12 2020
STATUS
approved