login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330819
Numbers of the form M_p^2(M^p+2)^2, where M_p is a Mersenne prime (A000668) and p is a Mersenne exponent (A000043). Also the first element of the spectral basis of A330817.
10
225, 3969, 1046529, 268402689, 4503599493152769, 295147905144993087489, 75557863725364567605249, 21267647932558653957237540927630737409, 28269553036454149273332760011886696242605918383730576346715242738439159809
OFFSET
1,1
COMMENTS
The second element of the spectral basis of A330817 is A330820.
LINKS
FORMULA
a(n) = A000668(n)^2*(A000668(n)+2)^2.
EXAMPLE
If p=2, then M_2=3, and a(1) = 3^2(3+2)^2 = 15^2 = 225.
MAPLE
A330819:=[]:
for www to 1 do
for i from 1 to 31 do
#ithprime(31)=127
p:=ithprime(i);
q:=2^p-1;
if isprime(q) then x:=2^(2*p+1)*q^2; A330819:=[op(A330819), x]; fi;
od;
od;
MATHEMATICA
(m = 2^MersennePrimeExponent[Range[9]] - 1)^2 * (m + 2)^2 (* Amiram Eldar, Jan 03 2020 *)
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jan 01 2020
STATUS
approved