login
A330819
Numbers of the form M_p^2(M^p+2)^2, where M_p is a Mersenne prime (A000668) and p is a Mersenne exponent (A000043). Also the first element of the spectral basis of A330817.
10
225, 3969, 1046529, 268402689, 4503599493152769, 295147905144993087489, 75557863725364567605249, 21267647932558653957237540927630737409, 28269553036454149273332760011886696242605918383730576346715242738439159809
OFFSET
1,1
COMMENTS
The second element of the spectral basis of A330817 is A330820.
LINKS
FORMULA
a(n) = A000668(n)^2*(A000668(n)+2)^2.
EXAMPLE
If p=2, then M_2=3, and a(1) = 3^2(3+2)^2 = 15^2 = 225.
MAPLE
A330819:=[]:
for www to 1 do
for i from 1 to 31 do
#ithprime(31)=127
p:=ithprime(i);
q:=2^p-1;
if isprime(q) then x:=2^(2*p+1)*q^2; A330819:=[op(A330819), x]; fi;
od;
od;
MATHEMATICA
(m = 2^MersennePrimeExponent[Range[9]] - 1)^2 * (m + 2)^2 (* Amiram Eldar, Jan 03 2020 *)
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jan 01 2020
STATUS
approved