login
A330818
Numbers of the form 2^(2*p+1), where p is a Mersenne exponent, A000043.
7
32, 128, 2048, 32768, 134217728, 34359738368, 549755813888, 9223372036854775808, 10633823966279326983230456482242756608, 766247770432944429179173513575154591809369561091801088
OFFSET
1,1
COMMENTS
Also the first factor of A330817, 2^(2*p+1)*M_p^2. The second factor of A330817 is A133049.
LINKS
FORMULA
a(n) = 2^(2*A000043(n)+1).
EXAMPLE
a(1) = 2^(2*2+1) = 32. Since M_2=3, the number 2^5*3^2 has power-spectral basis {225,64}.
MAPLE
A330818:=[]:
for www to 1 do
for i from 1 to 31 do
#ithprime(31)=127
p:=ithprime(i);
q:=2^p-1;
if isprime(q) then x:=2^(2*p+1); A330818:=[op(A330818), x]; fi;
od;
od;
MATHEMATICA
2^(2 * MersennePrimeExponent[Range[10]] + 1) (* Amiram Eldar, Jan 03 2020 *)
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jan 01 2020
STATUS
approved