login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = M(n)^2*(M(n)+1)^2, where M(n) = A000668(n) is the n-th Mersenne prime.
3

%I #32 Feb 10 2020 23:05:42

%S 144,3136,984064,264257536,4502500182851584,295143401596905324544,

%T 75557575495813049614336,21267647912751613342506514584526913536,

%U 28269553036454149248812831358032474524823101898744619883661101506865659904

%N a(n) = M(n)^2*(M(n)+1)^2, where M(n) = A000668(n) is the n-th Mersenne prime.

%C a(n+1) is the second element of the power-spectral basis of both A330836(n) and A330838(n). Also, a(n) = A139256(n)^2, where A139256(n) is the sum of the divisors of the n-th perfect number, A000396(n).

%C Also: squares of twice the perfect numbers. - _M. F. Hasler_, Feb 07 2020

%H G. Sobczyk, <a href="https://garretstar.com/secciones/publications/docs/monthly336-346.pdf">The Missing Spectral Basis in Algebra and Number Theory</a>, The American Mathematical Monthly 108(4), April 2001.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Idempotent_(ring_theory)">Idempotent (ring theory)</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Peirce_decomposition">Peirce decomposition</a>

%F a(n) = A330824(n) * A133049(n).

%F a(n) = (2*A000396(n))^2 = (2^p-1)^2*4^p with p = A000043(n). - _M. F. Hasler_, Feb 07 2020

%e If p=3, then a(2) = (7*2^3)^2 = 56^2, and the spectral basis of A330836(1) = 4704 and A330838(1) = 9408 is {63^2, 56^2, 48^2}, consisting of powers.

%p a := proc(n::posint)

%p local p, m;

%p p:=NumberTheory[IthMersenne](n);

%p m:=2^p-1;

%p return m^2*(m+1)^2;

%p end:

%t f[p_] := 2^(2p)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* _Amiram Eldar_, Jan 12 2020 *)

%o (PARI) forprime(p=1,999,isprime(2^p-1)&&print1((2^p-1)^2<<(2*p)",")) \\ _M. F. Hasler_, Feb 07 2020

%Y Cf. A000043, A000396, A000668, A133049, A139306, A139256, A330819, A330820, A330836.

%K nonn

%O 1,1

%A _Walter Kehowski_, Jan 12 2020