login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139256
Twice even perfect numbers. Also a(n) = M(n)*(M(n)+1), where M(n) is the n-th Mersenne prime A000668(n).
28
12, 56, 992, 16256, 67100672, 17179738112, 274877382656, 4611686016279904256, 5316911983139663489309385231907684352, 383123885216472214589586756168607276261994643096338432
OFFSET
1,1
COMMENTS
Also, twice perfect numbers, if there are no odd perfect numbers.
If there are no odd perfect numbers, essentially the same as A065125. - R. J. Mathar, May 23 2008
The sum of reciprocals of even divisors of a(n) equals 1. Proof: Let n = (2^m - 1)*2^m where 2^m - 1 is a Mersenne prime. The sum of reciprocals of even divisors of n is s1 + s2 where: s1 = 1/2 + 1/4 + ... + 1/2^m = (2^m - 1)/2^m and s2 = s1/(2^m - 1) => s1 + s2 = 1. - Michel Lagneau, Jul 17 2013
LINKS
Walter A. Kehowski, Power-spectral Numbers, ResearchGate (2024); also available at vixra.org.
FORMULA
a(n) = A000668(n)*(A000668(n)+1).
a(n) = 2*A000396(n), if there are no odd perfect numbers.
a(n) = A000203(A000396(n)) = A001065(A000396(n)) + A000396(n), assuming there are no odd perfect numbers. - Omar E. Pol, Dec 04 2016
EXAMPLE
a(3) = 992 because the third Mersenne prime A000668(3) is 31 and 31*(31+1) = 31*32 = 992.
a(3) = 992 because the sum of the divisors of the third perfect number is 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 + 496 = 992. - Omar E. Pol, Dec 05 2016
From Omar E. Pol, Aug 13 2021: (Start)
Illustration of initial terms in which a(n) is represented as the sum of the divisors of the n-th even perfect number P(n).
-------------------------------------------------------------------------
n P(n) a(n) Diagram: 1 2
-------------------------------------------------------------------------
_ _
| | | |
| | | |
_ _| | | |
| _| | |
_ _ _| _| | |
1 6 12 |_ _ _ _| | |
| |
| |
| |
| |
| |
| |
| |
_ _ _ _ _| |
| _ _ _ _ _|
| |
_ _| |
_ _| _ _|
| _|
_| _|
| _|
_ _ _| |
| _ _ _|
| |
| |
| |
_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
2 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
a(n) equals the area (also the number of cells) in the n-th diagram.
For n = 3, P(3) = 496 and a(3) = 992, the diagram is too large to include here. To draw that diagram note that the lengths of the line segments of the smallest Dyck path are [248, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 3, 5, 5, 6, 7, 9, 13, 17, 25, 42, 83, 248] and the lengths of the line segments of the largest Dyck path are [249, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 3, 5, 5, 6, 7, 9, 13, 17, 25, 42, 83, 249]. For a definition of these numbers related to partitions into consecutive parts see A237591. (End)
MATHEMATICA
DeleteCases[2 Map[(# (# + 1))/2 &, Select[2^Range[100] - 1, PrimeQ]], k_ /; OddQ@ k] (* Michael De Vlieger, Dec 05 2016, after Harvey P. Dale at A000396 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Apr 22 2008
EXTENSIONS
More terms from Omar E. Pol, Jun 07 2012
STATUS
approved