OFFSET
1,1
COMMENTS
a(n) has the same spectral basis as A330836(n), namely {M_p^2*(M_p+2)^2, M_p^2*(M_p+1)^2, (M_p^2-1)^2}, so the two numbers are isospectral as well as power-spectral, that is, they have the same spectral basis and that basis consists of powers. The spectral sum of a(n), that is, the sum of the elements of its spectral basis, is 1*a(n)+1, while the spectral sum of A330836(n) is 2*A330836(n)+1. We say that a(n) and A330836(n) form an isospectral pair, with a(n) of index 1 and A330836(n) of index 2.
Subsequence of Zumkeller numbers (A083207), since a(n) = 2^r * 3 * s, where s is relatively prime to 6. - Ivan N. Ianakiev, Feb 03 2020
LINKS
G. Sobczyk, The Missing Spectral Basis in Algebra and Number Theory, The American Mathematical Monthly 108(4), April 2001.
Wikipedia, Idempotent (ring theory)
Wikipedia, Peirce decomposition
EXAMPLE
If p = 3, then M_3 = 7 and a(1) = 2^(2*3)*3*7^2 = 9408, with spectral basis {63^2, 56^2, 48^2}, and spectral sum equal to 1*9408 + 1 = 9409. However, {63^2, 56^2, 48^2} is also the spectral basis of A330836(1) = 4704, with spectral sum equal to 2*4704+1.
MAPLE
a := proc(n::posint)
local p, m;
p:=NumberTheory[IthMersenne](n+1);
m:=2^p-1;
return 2^(2*p)*3*m^2;
end:
MATHEMATICA
f[p_] := 2^(2p)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 17 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jan 17 2020
STATUS
approved