login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328893
Partial sums of A095112: sum of the Dirichlet convolution of the characteristic function of the prime powers (A069513) with the positive integers (A000027) from 1 to n.
0
0, 0, 1, 2, 5, 6, 11, 12, 19, 23, 30, 31, 44, 45, 54, 62, 77, 78, 95, 96, 115, 125, 138, 139, 168, 174, 189, 202, 227, 228, 259, 260, 291, 305, 324, 336, 379, 380, 401, 417, 460, 461, 502, 503, 540, 569, 594, 595, 656, 664, 701, 721, 764, 765, 818, 834, 891, 913
OFFSET
0,4
COMMENTS
In general, for m >= 0, if we define f(n,m) = Sum_{p^k|n} Sum_{j=1..k} n^m/p^(m*j) (cf. A322664), then Sum_{k=1..n} f(k,m) = Sum_{k=1..n} Sum_{d|k} A069513(k/d) * d^m = Sum_{k=1..n} A069513(k) * F_m(floor(n/k)), where F_m(x) are the Faulhaber polynomials defined as F_m(x) = (Bernoulli(m+1, x+1) - Bernoulli(m+1, 1)) / (m+1).
Additionally, for m >= 1, Sum_{k=1..n} f(k,m) ~ Q(m+1) * n^(m+1)/(m+1), where Q(s) = Sum_{p prime} 1/(p^s - 1).
FORMULA
a(n) ~ A154945 * n*(n+1)/2.
a(n) = Sum_{k=1..n} k * A025528(floor(n/k)).
a(n) = Sum_{k=1..n} Sum_{d|k} d * A069513(k/d).
a(n) = (1/2)*Sum_{k=1..n} A069513(k) * floor(n/k) * floor(1+n/k).
PROG
(PARI) a(n) = sum(k=1, n, if(isprimepower(k), (n\k) * (1+n\k), 0))/2;
(PARI) ppcount(n) = sum(k=1, logint(n, 2), primepi(sqrtnint(n, k))); \\ A025528
f(n) = n*(n+1)/2; \\ A000217
a(n) = my(s=sqrtint(n)); sum(k=1, s, if(isprimepower(k), f(n\k), 0) + k*ppcount(n\k)) - f(s)*ppcount(s);
CROSSREFS
KEYWORD
nonn
AUTHOR
Daniel Suteu, Oct 29 2019
STATUS
approved