login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328892
If n = Product (p_j^k_j) then a(n) = Sum (2^(k_j - 1)).
0
0, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 1, 2, 2, 8, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 4, 3, 1, 3, 1, 16, 2, 2, 2, 4, 1, 2, 2, 5, 1, 3, 1, 3, 3, 2, 1, 9, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 4, 1, 2, 3, 32, 2, 3, 1, 3, 2, 3, 1, 6, 1, 2, 3, 3, 2, 3, 1, 9, 8, 2, 1, 4, 2, 2, 2, 5, 1, 4
OFFSET
1,4
FORMULA
If n = Product (p_j^k_j) then a(n) = Sum ordered partition(k_j).
Additive with a(p^e) = 2^(e-1).
EXAMPLE
a(72) = 6 because 72 = 2^3 * 3^2 and 2^(3 - 1) + 2^(2 - 1) = 6.
MAPLE
a:= n-> add(2^(i[2]-1), i=ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Oct 29 2019
MATHEMATICA
a[1] = 0; a[n_] := Plus @@ (2^(#[[2]] - 1) & /@ FactorInteger[n]); Table[a[n], {n, 1, 90}]
PROG
(PARI) a(n)={vecsum([2^(k-1) | k<-factor(n)[, 2]])} \\ Andrew Howroyd, Oct 29 2019
CROSSREFS
Cf. A000040 (positions of 1's), A008481, A011782, A162510, A324910.
Sequence in context: A216506 A072342 A257089 * A296131 A345344 A319004
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 29 2019
STATUS
approved