login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328896
Primes p such that p divides at least one of the integers Fibonacci(2k) for 2k <= p-1.
1
11, 19, 29, 31, 41, 47, 59, 61, 71, 79, 89, 101, 107, 109, 113, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 233, 239, 241, 251, 263, 269, 271, 281, 307, 311, 331, 347, 349, 353, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509
OFFSET
1,1
COMMENTS
Is the sequence infinite?
Yes, it contains all primes p == 1 or 4 (mod 5), because such p divide Fibonacci(p-1). - Robert Israel, Nov 05 2019
LINKS
EXAMPLE
There are two integers k with 2*k <= 29-1 such that 29 divides Fibonacci(2*k), namely k = 7 and 14, so 29 is a term of the sequence.
MAPLE
filter:= proc(p) local f, k, a, b, t;
a:= -1; b:= 0;
for k from 1 to (p-1)/2 do
t:= a+2*b mod p;
a:= a+b mod p; b:= t;
if t = 0 then return true fi;
od;
false
end proc:
select(filter, [seq(ithprime(i), i=2..100)]); # Robert Israel, Nov 05 2019
PROG
(PARI) forprime(p=1, 100, for(k=1, (p-1)/2, if(Mod(fibonacci(2*k), p)==0, print1(p, ", "); break)))
(Sage)
def isA328896(p):
return any(p.divides(fibonacci(2*k)) for k in (1..(p-1)//2))
print([p for p in primes(1, 510) if isA328896(p)]) # Peter Luschny, Nov 01 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Oct 30 2019
EXTENSIONS
Definition corrected by Robert Israel, Nov 05 2019
STATUS
approved