login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A095112: sum of the Dirichlet convolution of the characteristic function of the prime powers (A069513) with the positive integers (A000027) from 1 to n.
0

%I #5 Nov 06 2019 18:34:51

%S 0,0,1,2,5,6,11,12,19,23,30,31,44,45,54,62,77,78,95,96,115,125,138,

%T 139,168,174,189,202,227,228,259,260,291,305,324,336,379,380,401,417,

%U 460,461,502,503,540,569,594,595,656,664,701,721,764,765,818,834,891,913

%N Partial sums of A095112: sum of the Dirichlet convolution of the characteristic function of the prime powers (A069513) with the positive integers (A000027) from 1 to n.

%C In general, for m >= 0, if we define f(n,m) = Sum_{p^k|n} Sum_{j=1..k} n^m/p^(m*j) (cf. A322664), then Sum_{k=1..n} f(k,m) = Sum_{k=1..n} Sum_{d|k} A069513(k/d) * d^m = Sum_{k=1..n} A069513(k) * F_m(floor(n/k)), where F_m(x) are the Faulhaber polynomials defined as F_m(x) = (Bernoulli(m+1, x+1) - Bernoulli(m+1, 1)) / (m+1).

%C Additionally, for m >= 1, Sum_{k=1..n} f(k,m) ~ Q(m+1) * n^(m+1)/(m+1), where Q(s) = Sum_{p prime} 1/(p^s - 1).

%F a(n) ~ A154945 * n*(n+1)/2.

%F a(n) = Sum_{k=1..n} k * A025528(floor(n/k)).

%F a(n) = Sum_{k=1..n} Sum_{d|k} d * A069513(k/d).

%F a(n) = (1/2)*Sum_{k=1..n} A069513(k) * floor(n/k) * floor(1+n/k).

%o (PARI) a(n) = sum(k=1, n, if(isprimepower(k), (n\k) * (1+n\k), 0))/2;

%o (PARI) ppcount(n) = sum(k=1, logint(n,2), primepi(sqrtnint(n, k))); \\ A025528

%o f(n) = n*(n+1)/2; \\ A000217

%o a(n) = my(s=sqrtint(n)); sum(k=1, s, if(isprimepower(k), f(n\k), 0) + k*ppcount(n\k)) - f(s)*ppcount(s);

%Y Cf. A025528, A022559, A069513, A154945, A322068.

%K nonn

%O 0,4

%A _Daniel Suteu_, Oct 29 2019