The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140144 a(1)=1, a(n)=a(n-1)+n^1 if n odd, a(n)=a(n-1)+ n^0 if n is even. 3
 1, 2, 5, 6, 11, 12, 19, 20, 29, 30, 41, 42, 55, 56, 71, 72, 89, 90, 109, 110, 131, 132, 155, 156, 181, 182, 209, 210, 239, 240, 271, 272, 305, 306, 341, 342, 379, 380, 419, 420, 461, 462, 505, 506, 551, 552, 599, 600, 649, 650, 701, 702, 755, 756, 811, 812, 869 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equals triangle A177990 * [1,2,3,...]. - Gary W. Adamson, May 16 2010 LINKS Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA From_Paolo P. Lava_, Jun 06 2008: (Start) a(n) = a(n-1)+{[1-(-1)^n]/2}*n+{[1+(-1)^n]/2}, with a(1)=1. a(n) = -(1/8)-(1/4)*(-1)^n*n+(1/8)*(-1)^n+(1/4)*n^2+(3/4)*n. (End) From R. J. Mathar, Feb 22 2009: (Start) a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). G.f.: x*(-1-x-x^2+x^3)/ ((1+x)^2*(x-1)^3). (End) a(n) = Sum_{k=1..n} k^(k mod 2). - Wesley Ivan Hurt, Nov 20 2021 MATHEMATICA a = {}; r = 1; s = 0; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a CROSSREFS Cf. A000027, A000217, A000330, A000537, A000538, A000539, A136047, A140113. Cf. A177990. - Gary W. Adamson, May 16 2010 Cf. A002378 (even bisection), A028387 (odd bisection). Sequence in context: A057812 A329572 A329569 * A328893 A030130 A164874 Adjacent sequences:  A140141 A140142 A140143 * A140145 A140146 A140147 KEYWORD nonn,easy AUTHOR Artur Jasinski, May 12 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 23:05 EDT 2022. Contains 353886 sequences. (Running on oeis4.)