login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322593
a(n) = 2^n + 2*n^2 + 1.
2
2, 5, 13, 27, 49, 83, 137, 227, 385, 675, 1225, 2291, 4385, 8531, 16777, 33219, 66049, 131651, 262793, 525011, 1049377, 2098035, 4195273, 8389667, 16778369, 33555683, 67110217, 134219187, 268437025, 536872595, 1073743625, 2147485571, 4294969345, 8589936771
OFFSET
0,1
COMMENTS
For n = 3..7, a(n) is the number of evaluating points on the n-dimensional sphere (also n-space with weight function exp(-r^2) or exp(-r)) in a degree 7 cubature rule.
REFERENCES
Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
a(n) = a(n-1) + A100315(n-1), n >= 2.
G.f.: (2 - 5*x + 6*x^2 - 7*x^3)/((1 - 2*x)*(1 - x)^3)
E.g.f.: exp(2*x) + (1 + 2*x + 2*x^2)*exp(x).
MATHEMATICA
Table[2^n + 2*n^2 + 1, {n, 0, 50}]
LinearRecurrence[{5, -9, 7, -2}, {2, 5, 13, 27}, 50] (* Harvey P. Dale, Mar 23 2021 *)
PROG
(Maxima) makelist(2^n + 2*n^2 + 1, n, 0, 50);
(Magma) [2^n + 2*n^2 + 1: n in [0..33]]; // Marius A. Burtea, Dec 28 2018
KEYWORD
nonn,easy
AUTHOR
STATUS
approved