OFFSET
0,1
COMMENTS
For n = 3..7, a(n) is the number of evaluating points on the n-dimensional sphere (also n-space with weight function exp(-r^2) or exp(-r)) in a degree 7 cubature rule.
REFERENCES
Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.
LINKS
Marius A. Burtea, Table of n, a(n) for n = 0..200
Ronald Cools, Encyclopaedia of Cubature Formulas
Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
a(n) = a(n-1) + A100315(n-1), n >= 2.
G.f.: (2 - 5*x + 6*x^2 - 7*x^3)/((1 - 2*x)*(1 - x)^3)
E.g.f.: exp(2*x) + (1 + 2*x + 2*x^2)*exp(x).
MATHEMATICA
Table[2^n + 2*n^2 + 1, {n, 0, 50}]
LinearRecurrence[{5, -9, 7, -2}, {2, 5, 13, 27}, 50] (* Harvey P. Dale, Mar 23 2021 *)
PROG
(Maxima) makelist(2^n + 2*n^2 + 1, n, 0, 50);
(Magma) [2^n + 2*n^2 + 1: n in [0..33]]; // Marius A. Burtea, Dec 28 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Franck Maminirina Ramaharo, Dec 18 2018
STATUS
approved