login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321123
a(n) = 2^n + 2*n^2 + 2*n + 1.
2
2, 7, 17, 33, 57, 93, 149, 241, 401, 693, 1245, 2313, 4409, 8557, 16805, 33249, 66081, 131685, 262829, 525049, 1049417, 2098077, 4195317, 8389713, 16778417, 33555733, 67110269, 134219241, 268437081, 536872653, 1073743685, 2147485633, 4294969409, 8589936837
OFFSET
0,1
COMMENTS
For n >= 2, a(n) is the number of evaluation points on the n-dimensional cube in Genz and Malik's degree 7 cubature rule.
LINKS
Ronald Cools and Philip Rabinowitz, Monomial cubature rules since "Stroud": a compilation, Journal of Computational and Applied Mathematics Vol. 48 (1993), 309-326.
Alan C. Genz and Awais A. Malik, Remarks on algorithm 006: An adaptive algorithm for numerical integration over an N-dimensional rectangular region, Journal of Computational and Applied Mathematics Vol. 6 (1980), 295-302.
FORMULA
a(n) = A000079(n) + A001844(n).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4), n >= 4.
G.f.: (2 - 3*x - 3*x^3)/((1 - 2*x)*(1 - x)^3).
E.g.f.: exp(2*x) + (1 + 4*x + 2*x^2)*exp(x).
MATHEMATICA
Table[2^n + 2*n^2 + 2*n + 1, {n, 0, 50}]
PROG
(Maxima) makelist(2^n + 2*n^2 + 2*n + 1, n, 0, 50);
(Magma) [2^n + 2*n^2 + 2*n + 1: n in [0..33]]; // Marius A. Burtea, Dec 28 2018
KEYWORD
nonn,easy
AUTHOR
STATUS
approved