OFFSET
0,5
COMMENTS
The weights in this quadrature rule are T(n,k)/A321122(n), 0 <= k <= n. For n = 1, 2, 3, we obtain the trapezoid rule, Simpson's rule, and Simpson's 3/8 rule, respectively.
REFERENCES
Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.
LINKS
Franck Maminirina Ramaharo, Rows n = 0..150 of triangle, flattened
Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, Chapter II. The Cubic Spline, Mathematics in Science and Engineering Volume 38 (1967), pp. 9-74.
Wikipedia, Newton-Cotes formulas
FORMULA
T(n,k) = T(n,n-k).
T(0,0) = 0 and T(n,k) = A093735(n,k) for n = 1, 2, 3.
Let s = -2 + sqrt(3), and define e(n) = s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)), f(n,k) = 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)), and w(n,0) = 1/4 + e(n)/6, w(n,1) = 2 - (1 + 1/6)*e(n), w(n,k) = 1 + f(n,k)/4 for 2 <= k <= n - 2. Then T(n,k) = A321122(n)*w(n,k) for 0 <= k <= n, n >= 3.
EXAMPLE
Triangle begins (denominator is factored out):
0; 1/4
1, 1; 1/2
1, 4, 1; 1/3
3, 9, 9, 3; 1/8
13, 44, 30, 44, 13; 1/36
35, 115, 90, 90, 115, 35; 1/96
16, 53, 40, 46, 40, 53, 16; 1/44
131, 433, 330, 366, 366, 330, 433, 131; 1/360
179, 592, 450, 504, 486, 504, 450, 592, 179; 1/492
163, 539, 410, 458, 446, 446, 458, 410, 539, 163; 1/448
...
MATHEMATICA
s = -2 + Sqrt[3];
e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
a321122[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}]
Join[{0, 1, 1, 1, 4, 1}, Table[FullSimplify[a321122[n]*w[n, k]], {n, 3, 12}, {k, 0, n}]] // Flatten
PROG
(Maxima)
s : -2 + sqrt(3)$
e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
a321122(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
append([0, 1, 1, 1, 4, 1], create_list(fullratsimp(a321122(n)*w(n, k)), n, 3, 12, k, 0, n));
CROSSREFS
KEYWORD
AUTHOR
Franck Maminirina Ramaharo, Nov 16 2018
STATUS
approved