login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322595 a(n) = (n^3 + 9*n + 14*n + 9)/3. 4
3, 11, 21, 35, 55, 83, 121, 171, 235, 315, 413, 531, 671, 835, 1025, 1243, 1491, 1771, 2085, 2435, 2823, 3251, 3721, 4235, 4795, 5403, 6061, 6771, 7535, 8355, 9233, 10171, 11171, 12235, 13365, 14563, 15831, 17171, 18585, 20075, 21643, 23291, 25021, 26835 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For n >= 6, a(n) is the number of evaluating points on the hypersphere in R^n in Stoyanovas's degree 7 cubature rule.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Ronald Cools, Encyclopaedia of Cubature Formulas

Ronald Cools, Monomial cubature rules since "Stroud": a compilation - part 2, Journal of Computational and Applied Mathematics - Numerical evaluation of integrals Vol. 112 (1999), 21-27.

Srebra B. Stoyanova, Cubature of the seventh degree of accuracy for the hypersphere, Journal of Computational and Applied Mathematics Vol. 84 (1997), 15-21.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.

a(n) = 2*binomial(n + 1, 3) + 6*binomial(n + 1, 2) + 2*binomial(n + 1, 1) + 1.

G.f.: (3 - x - 5*x^2 + 5*x^3)/(1 - x)^4. [Corrected by Georg Fischer, May 23 2019]

E.g.f.: (1/3)*(9 + 24*x + 12*x^2 + x^3)*exp(x).

MATHEMATICA

Table[(n^3 + 9*n + 14*n + 9)/3, {n, 0, 50}]

LinearRecurrence[{4, -6, 4, -1}, {3, 11, 21, 35}, 50] (* Harvey P. Dale, Aug 19 2020 *)

PROG

(Maxima) makelist((n^3 + 9*n + 14*n + 9)/3, n, 0, 50);

(Magma) [(n^3 + 9*n + 14*n + 9)/3: n in [0..45]]; // Vincenzo Librandi, Jun 05 2019

CROSSREFS

First differences: A027693.

Cf. A000292, A161680, A174794, A321124, A322594.

Sequence in context: A088619 A031318 A082485 * A317298 A064568 A147073

Adjacent sequences: A322592 A322593 A322594 * A322596 A322597 A322598

KEYWORD

nonn,easy

AUTHOR

Franck Maminirina Ramaharo, Dec 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 22:05 EST 2022. Contains 358698 sequences. (Running on oeis4.)